近日,DeepSeek AI团队人员又在Arxiv上发布了一篇新的论文,“CODEI/O: Condensing Reasoning Patterns via Code Input-Output Prediction”,该研究创新性地将代码输入输出预测转化为自然语言推理链,成功解耦结构化推理与代码语法的耦合,使模型能够系统化学习逻辑流规划、状态空间搜索、决策树遍历等通用推理原语。实验表明,该模型不仅在代码任务上,还在符号推理、科学推理、数学计算及常识推理等五大任务中均实现性能跃升,值得阅读。
©️【深蓝AI】编译
论文标题:CODEI/O: Condensing Reasoning Patterns via Code Input-Output Prediction
论文作者:Junlong Li,Daya Guo,Dejian Yang,Runxin Xu,Yu Wu,Junxian He
论文地址:https://arxiv.org/pdf/2502.07316v3
论文一作Junlong Li是在DeepSeek AI的实习生,二作Daya Guo则是参与了DeepSeek V2、V3以及R1等多个模型的核心研究员,虽然这篇论文没有挂上DeepSeek的官方tile,但是也从一定程度上揭示了DeepSeek研究团队的动向,值得关注与参考。
一、从代码数据中构建自然语言思维链
研究人员相信,真实世界的代码程序反映了跨多样场景的广泛推理模式的整合,这使其成为理想的训练来源,同时能最大限度地降低过拟合风险。然而,直接对原始代码进行传统的持续预训练效果欠佳,因为相关的推理信号往往隐含在数据之中且往往伴随着噪声信息。即使是直接训练模型从文本到代码生成的能力也存在挑战,因为它受限于生成代码专用语法的要求,难以泛化到非代码特定任务。
为解决这些局限性,研究人员提出将原始代码文件转化为可执行函数,并设计更直观的任务:给定函数及其对应的文本查询,模