【CVPR2024】《TextMonkey: An OCR-Free Large Multimodal Model for Understanding Document》译读笔记

TextMonkey: An OCR-Free Large Multimodal Model for Understanding Document

Keywords: Agent, App Agent

摘要

本文介绍了TextMonkey,一种以文本为中心的任务而定制的大型多模态模型(LMM)。本文的方法引入了多个维度的增强:通过采用零初始化的 Shifted Window Attention,本文在更高的输入分辨率下实现了跨窗口连通性(cross-window connectivity)并稳定了早期训练;本文假设图像可能包含冗余的tokens,通过使用相似性过滤出重要的tokens,本文不仅可以简化token长度,还可以提升模型的性能。此外,通过扩展模型的功能以涵盖文本识别和基准定位(grounding),并将位置信息纳入响应中,本文还增强了可解释性。它还可以继续learns、通过微调(finetuning)来执行屏幕截图的相关任务。模型在12个基准测试中的评估显示出显著的改进:场景文本类型任务(包括STVQA、TextVQA和OCRVQA)中提升了5.2%,文档导向任务(如DocVQA、InfoVQA、ChartVQA、DeepForm、Kleister Charity 和 WikiTableQuestions)提升了6.9%,Key Information Extraction任务(包括FUNSD、SROIE和POIE)提升了2.8%。它在场景文本定位中以10.9%的增幅超越了其他方法,并在OCRBench上设立了新基准,OCRBench是一个包含29项OCR相关评估的综合性基准测试,本文得分为561,超过了以往开源的多模态文档理解大模型(large multimodal models)。代码将在 https://github.com/Yuliang-Liu/Monkey 发布。

索引项:多模态大模型,文档分析,场景文字,分辨率,OCRBench

1 引言

从各种来源(包括表格、表单和发票等文档)以及生活文本中提取关键信息对于工业界和学术界研究至关重要,旨在自动化和优化基于文档和场景文本的工作流程。该领域需要文档图像和真实场景中的文本检测和识别、语言理解以及视觉和语言(vision and language)的整合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值