AI菜鸟向前飞 — 基础知识篇

前言

主要介绍最最基础的知识,在这个基础上有现在比较流行的GPT、Llama、Gemini等一系列大模型的出现,打好基础才能更理解上面是如何运作以及实现的过程。

PS:本篇科普不会介绍梯度下降算法(偏导数)等复杂的过程,先只会点到为止。

生命周期

  • 建模(Modeling)

        建模是设计深度学习模型的过程,包括选择适当的网络架构。

        在此阶段,你需要确定的网络层数,每层的节点数、激活函数类型、优化器以及损失函数等。

  • 训练(Training)

        训练阶段是深度学习模型学习并优化权重的过程。

        在此阶段,模型通过一组已标记的训练数据进行学习。这个过程在训练数据集上反复运行,直到模型的性能达到满意的程度或者达到预定的迭代次数,其中包含:有监督学习、无监督学习、半监督学习。

  • 验证(Validation)

        验证阶段通常在训练过程中进行,其目的是评估模型对未见过的数据的泛化能力。

        在此阶段,模型在一个独立的,非训练数据集(验证集)上进行测试。验证过程帮助我们调整模型参数,并决定何时停止训练。

  • 推理(Inference)

        推理阶段是模型部署后的阶段,也就是模型在实际环境中作出预测的阶段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值