线性代数初探(行列式,矩阵初等变换,矩阵的秩)

  • 引言:边听网课边看线性代数,爽!
    线代太好玩了,鉴于博主的老年记忆,赶紧记录下来
    本文主要介绍行列式的一些性质与应用,还有矩阵的一些运算
    大概是《线性代数》的精简版外加一些自己的理解

  • 行列式的定义
    p p p 1 , 2 , . . . , n 1,2,...,n 1,2,...,n 的一个排列,排列中的逆序对个数为 t t t,那么行列式为
    ∑ ( − 1 ) t a i , p 1 a 2 , p 2 . . . a n , p n \sum(-1)^ta_{i,p_1}a_{2,p_2}...a_{n,p_n} (1)tai,p1a2,p2...an,pn
    引理1:交换排列中的任意两个数 p i , p j p_i,p_j pi,pj,逆序对个数奇偶性改变
    证明:相邻的时候显然会改变,不相邻的时候假设中间有 m m m 个数,需要用 m m m 次换过去再用 m − 1 m-1 m1 次换回来,得证。

  • 行列式的性质

    D = ∣ a 1 , 1 a 1 , 2 . . . a 1 , n a 2 , 1 a 2 , 2 . . . a 2 , n . . . . . . . . . . . . a n , 1 a n , 2 . . . a n , n ∣ , D T = ∣ a 1 , 1 a 2 , 1 . . . a n , 1 a 1 , 2 a 2 , 2 . . . a n , 2 . . . . . . . . . . . . a 1 , n a 2 , n . . . a n , n ∣ D=\begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ...& a_{2,n}\\ ... & ...& ... &... \\ a_{n,1} & a_{n,2} & ... & a_{n,n}\end{vmatrix},D^T=\begin{vmatrix} a_{1,1} & a_{2,1} & ... & a_{n,1} \\ a_{1,2} & a_{2,2} & ...& a_{n,2}\\ ... & ...& ... &... \\ a_{1,n} & a_{2,n} & ... & a_{n,n}\end{vmatrix} D=a1,1a2,1...an,1a1,2a2,2...an,2............a1,na2,n...an,n,DT=a1,1a1,2...a1,na2,1a2,2...a2,n............an,1an,2...an,n
    其中 D T D^T DT 为 行列式 D D D 的转置行列式。

  • 性质1: D T = D D^T=D DT=D
    对于 D D D 中的任意一项, ( − 1 ) t a 1 , p 1 a 2 , p 2 . . . a i , p i . . . a j , p j . . . a n , p n (-1)^ta_{1,p_1}a_{2,p_2}...a_{i,p_i}...a_{j,p_j}...a_{n,p_n} (1)ta1,p1a2,p2...ai,pi...aj,pj...an,pn,交换 a i , p i , a j , p j a_{i,p_i},a_{j,p_j} ai,pi,aj,pj,意义是行标排列和列标排列做了一次相应的对换,注意到这个过程并不改变奇偶性,于是我们可以找到 D T D^T DT 中的唯一一项 ( − 1 ) t ′ a q 1 , 1 a q 2 , 2 . . . a q n , n (-1)^{t'}a_{q_1,1}a_{q_2,2}...a_{q_n,n} (1)taq1,1aq2,2...aqn,n 与之相等,只需要考虑每次把第 i i i 换到第 q i q_i qi 项即可。

  • 性质2:对换行列式中的两行或两列,行列式变号。
    考虑某一项 ( − 1 ) t a 1 , p 1 a 2 , p 2 . . . a i , p i . . . a j , p j . . . a n , p n (-1)^ta_{1,p_1}a_{2,p_2}...a_{i,p_i}...a_{j,p_j}...a_{n,p_n} (1)ta1,p1a2,p2...ai,pi...aj,pj...an,pn,变成 ( − 1 ) t ′ a 1 , p 1 a 2 , p 2 . . . a i , p j . . . a j , p i . . . a n , p n (-1)^{t'}a_{1,p_1}a_{2,p_2}...a_{i,p_j}...a_{j,p_i}...a_{n,p_n} (1)ta1,p1a2,p2...ai,pj...aj,pi...an,pn 逆序对个数改变奇偶性于是 ( − 1 ) t ′ = − ( − 1 ) t (-1)^{t'}=-(-1)^t (1)t=(1)t,得证。
    推论:两行或两列相同行列式为 0

  • 性质3:行列式中某一行或一列乘上一个数 k k k 的行列式等于用 k k k 乘上这个行列式

  • 性质4:若行列式的某一行或列都是两数的和,那么可以拆成两个行列式的和
    推论:把某一行或列的每个元素乘上 k k k 加到令一行行列式不变

  • 行列式按行(列)展开
    n n n 阶行列式中,把 ( i , j ) (i,j) (i,j) a i , j a_{i,j} ai,j 的第 i i i 行和第 j j j 列划去留下的 n − 1 n-1 n1 阶行列式叫做 ( i , j ) (i,j) (i,j) a i , j a_{i,j} ai,j 的余子式,记为 M i , j M_{i,j} Mi,j,记 A i , j = ( − 1 ) i + j M i , j A_{i,j}=(-1)^{i+j}M_{i,j} Ai,j=(1)i+jMi,j,叫做 ( i , j ) (i,j) (i,j) a i , j a_{i,j} ai,j 的代数余子式

  • 引理:如果第 i i i 行元素除了 a i , j a_{i,j} ai,j 外都为 0 ,那么 D = a i , j A i , j D=a_{i,j}A_{i,j} D=ai,jAi,j
    i = j = 1 i=j=1 i=j=1 时显然成立,否则我们交换 i − 1 i-1 i1 次换到第一行,交换 j − 1 j-1 j1 次换到第一列
    定理:行列式等于它任一行(一列)的各元素对应的代数余子式乘积之和
    D = ∑ j = 1 n a i , j A i , j D=\sum_{j=1}^na_{i,j}A_{i,j} D=j=1nai,jAi,j

  • 简介:范德蒙得行列式
    D n = ∣ 1 1 . . . 1 x 1 x 2 . . . x n . . . . . . . . . . . . x 1 n x 2 n . . . x n n ∣ = ∏ n ≥ i > j ≥ 1 ( x i − x j ) D_n=\begin{vmatrix} 1&1 & ... & 1 \\ x_1& x_2 & ...& x_n\\ ... & ...& ... &... \\x_1^n &x_2^n & ... &x_n^n\end{vmatrix}=\prod_{n\ge i>j\ge 1}(x_i-x_j) Dn=1x1...x1n1x2...x2n............1xn...xnn=ni>j1(xixj)
    证明:数学归纳法,当 n = 2 n=2 n=2
    D 2 = ∣ 1 1 x 1 x 2 ∣ = x 2 − x 1 D_2=\begin{vmatrix} 1&1 \\ x_1& x_2 \end{vmatrix}=x_2-x_1 D2=1x11x2=x2x1
    假设其对 n − 1 n-1 n1 阶行列式成立,要证其对 n n n 阶成立,我们需要把 n n n 将阶(展开)
    从最后一行开始减掉上一行的 x 1 x_1 x1
    D n = ∣ 1 1 . . . 1 0 x 2 − x 1 . . . x n − x 1 . . . . . . . . . . . . 0 x 2 n − 2 ( x 2 − x 1 ) . . . x n n − 2 ( x n − x 1 ) ∣ = ∏ i = 2 n ( x i − x 1 ) ∣ 1 . . . 1 . . . . . . . . . x 2 n − 2 . . . x n n − 2 ∣ D_n=\begin{vmatrix} 1&1 & ... & 1 \\ 0& x_2-x_1& ...& x_n-x_1\\ ... & ...& ... &... \\0 &x_2^{n-2}(x_2-x_1) & ... &x_n^{n-2}(x_n-x_1)\end{vmatrix}=\prod_{i=2}^n(x_i-x_1)\begin{vmatrix} 1 & ...& 1\\ ... & ... &... \\x_2^{n-2} & ... &x_n^{n-2}\end{vmatrix} Dn=10...01x2x1...x2n2(x2x1)............1xnx1...xnn2(xnx1)=i=2n(xix1)1...x2n2.........1...xnn2

  • 若要计算 b 1 A i , 1 + b 2 ∗ A i , 2 + . . . + b n ∗ A i , n b_1A_{i,1}+b_2*A_{i,2}+...+b_n *A_{i,n} b1Ai,1+b2Ai,2+...+bnAi,n 那么我们可以把第 i i i 行换成 b b b 向量算行列式
    正确性显然,这就引发一个推论:当 b b b 取行列式某一行 a j a_j aj
    ∑ k = 1 n a j , k ∗ A i , k = { 0 i ≠ j D i = j \sum_{k=1}^na_{j,k}*A_{i,k}=\begin{cases} 0& {i\neq j}\\ D& {i=j} \end{cases} k=1naj,kAi,k={0Di=ji=j

  • 这就引出了矩阵中一个特别巧妙的东西 ---- 伴随矩阵
    行列式 ∣ A ∣ |A| A 的各个元素的代数余子式 A i , j A_{i,j} Ai,j 构成如下矩阵
    A ∗ = ∣ A 1 , 1 A 2 , 1 . . . A n , 1 A 1 , 2 A 2 , 2 . . . A n , 2 . . . . . . . . . . . . x 1 , n A 2 , n . . . A n , n ∣ A^{*}=\begin{vmatrix} A_{1,1}& A_{2,1} & ... & A_{n,1} \\ A_{1,2}& A_{2,2} & ...& A_{n,2}\\ ... & ...& ... &... \\x_{1,n} &A_{2,n} & ... &A_{n,n}\end{vmatrix} A=A1,1A1,2...x1,nA2,1A2,2...A2,n............An,1An,2...An,n
    称为 A A A 的伴随矩阵,那么根据之前的结论有:
    A ∗ A ∗ = ∣ A ∣ ∗ E A*A^{*}=|A|*E AA=AE

  • 矩阵求逆:
    引理: ∣ A B ∣ = ∣ A ∣ ∗ ∣ B ∣ |AB|=|A|*|B| AB=AB 指矩阵 A A A 乘矩阵 B B B 的行列式等于分别的行列式的乘积,证明 n = 2 n=2 n=2 的情况:
    A = ( a i , j ) , B = ( b i , j ) A=(a_{i,j}),B=(b_{i,j}) A=(ai,j),B=(bi,j),构造一个四阶行列式:
    D = ∣ a 1 , 1 a 1 , 2 0 0 a 2 , 1 a 2 , 2 0 0 − 1 0 b 1 , 1 b 1 , 2 0 − 1 b 2 , 1 b 2 , 2 ∣ = ∣ A O − E B ∣ D=\begin{vmatrix} a_{1,1}&a_{1,2} & 0& 0 \\ a_{2,1}& a_{2,2} & 0& 0\\ -1 & 0 & b_{1,1}&b_{1,2} \\0 &-1 & b_{2,1} &b_{2,2} \end{vmatrix}=\begin{vmatrix}A&O\\ -E & B\end{vmatrix} D=a1,1a2,110a1,2a2,20100b1,1b2,100b1,2b2,2=AEOB
    对于一个 n n n 阶矩阵,如果有一个 n n n 阶矩阵 B B B,使 A B = B A = E AB=BA=E AB=BA=E 则称矩阵 A A A 是可逆的,并把 B B B 称为 A A A 的逆矩阵,骚气变换:
    A = ( a i , j ) , B = ( b i , j ) A=(a_{i,j}),B=(b_{i,j}) A=(ai,j),B=(bi,j),构造一个四阶行列式:
    D = ∣ a 1 , 1 a 1 , 2 0 0 a 2 , 1 a 2 , 2 0 0 − 1 0 b 1 , 1 b 1 , 2 0 − 1 b 2 , 1 b 2 , 2 ∣ = ∣ a 1 , 1 a 1 , 2 a 1 , 1 b 1 , 1 + a 1 , 2 b 2 , 1 a 1 , 1 b 1 , 2 + a 1 , 2 b 2 , 2 a 2 , 1 a 2 , 2 a 2 , 1 ∗ b 1 , 1 + a 2 , 2 ∗ b 2 , 1 a 2 , 1 b 1 , 2 + a 2 , 2 ∗ b 2 , 2 − 1 0 0 0 0 − 1 0 0 ∣ D=\begin{vmatrix} a_{1,1}&a_{1,2} & 0& 0 \\ a_{2,1}& a_{2,2} & 0& 0\\ -1 & 0 & b_{1,1}&b_{1,2} \\0 &-1 & b_{2,1} &b_{2,2} \end{vmatrix}=\begin{vmatrix} a_{1,1}&a_{1,2} & a_{1,1}b_{1,1}+a_{1,2}b_{2,1}& a_{1,1}b_{1,2}+a_{1,2}b_{2,2} \\ a_{2,1}& a_{2,2} & a_{2,1}*b_{1,1}+a_{2,2}*b_{2,1}& a_{2,1}b_{1,2}+a_{2,2}*b_{2,2}\\ -1 & 0 & 0&0 \\0 &-1 &0 &0 \end{vmatrix} D=a1,1a2,110a1,2a2,20100b1,1b2,100b1,2b2,2=a1,1a2,110a1,2a2,201a1,1b1,1+a1,2b2,1a2,1b1,1+a2,2b2,100a1,1b1,2+a1,2b2,2a2,1b1,2+a2,2b2,200
    = ∣ A A ∗ B − E O ∣ = = ∣ − E O A A ∗ B ∣ = A ∗ B =\begin{vmatrix}A&A*B\\ -E & O\end{vmatrix}==\begin{vmatrix}-E&O\\A&A*B\end{vmatrix}=A*B =AEABO==EAOAB=AB

定理1:若矩阵 A A A 可逆,则 ∣ A ∣ ≠ 0 |A|\neq 0 A=0
证明:存在 A − 1 A^{-1} A1 使得 A A − 1 = E AA^{-1}=E AA1=E,故 ∣ A A − 1 ∣ = ∣ A ∣ ∗ ∣ A − 1 ∣ = ∣ E ∣ = 1 |AA^{-1}|=|A|*|A^{-1}|=|E|=1 AA1=AA1=E=1 所以 ∣ A ∣ ≠ 0 |A|\neq 0 A=0
定理2:若 ∣ A ∣ ≠ 0 |A|\neq 0 A=0,则矩阵可逆,且 A − 1 = 1 ∣ A ∣ ∗ A ∗ A^{-1}=\frac{1}{|A|}*A^{*} A1=A1A,妙妙妙!

  • 克拉默法则
    解线性方程组
    ( a 1 , 1 a 1 , 2 . . . a 1 , n a 2 , 1 a 2 , 2 . . . . a 2 , n . . . . . . . . . . . . a n , 1 a n , 2 . . . a n , n ) ( x 1 x 2 . . . x n ) = ( b 1 b 2 . . . b n ) \begin{pmatrix} a_{1,1}&a_{1,2} & ... & a_{1,n} \\ a_{2,1}& a_{2,2} & .... & a_{2,n}\\...& ...& ...&...\\a_{n,1}&a_{n,2}&...&a_{n,n} \end{pmatrix}\begin{pmatrix} x_1\\ x_2\\...\\x_n \end{pmatrix}=\begin{pmatrix} b_1\\ b_2\\...\\b_n \end{pmatrix} a1,1a2,1...an,1a1,2a2,2...an,2.............a1,na2,n...an,nx1x2...xn=b1b2...bn
    记为 A X = B AX=B AX=B
    克拉默法则:如果 ∣ A ∣ ≠ 0 |A|\neq 0 A=0,那么方程组有唯一解
    发现 X = A − 1 B = A ∗ ∣ A ∣ ∗ B X=A^{-1}B=\frac{A^{*}}{|A|}*B X=A1B=AAB,注意到
    x j = 1 ∣ A ∣ ∗ ( b 1 ∗ A 1 , j + b 2 ∗ A 2 , j + . . . + b n A n , j ) = ∣ A j ∣ ∣ A ∣ x_j=\frac{1}{|A|}*(b_1*A_{1,j}+b_2*A_{2,j}+...+b_nA_{n,j})=\frac{|A_j|}{|A|} xj=A1(b1A1,j+b2A2,j+...+bnAn,j)=AAj
    其中 A j A_j Aj 为将矩阵的第 j j j 列换为 B B B 的矩阵 , A i , j A_{i,j} Ai,j 为代数余子式

矩阵初等变换与矩阵求逆看这里

  • 矩阵的秩
    定义:在 n × m n\times m n×m 的矩阵 A A A 中,任取 k k k k k k 列不改变次序算出行列式称为矩阵 A A A k k k 阶子式。
    引理:设 A ∼ B A\sim B AB,则 A A A B B B 中的非零子式的最高阶数相等。
    我们只需证明经过一次初等行变换得到的 B B B,在交换两行或将一行乘 k ≠ 0 k\neq 0 k=0 时,总能找到与 D D D对应的 r r r 阶子式使得 D 1 = D , D 1 = − D , D 1 = k D D_1=D,D_1=-D,D_1=kD D1=D,D1=D,D1=kD
    当一行加上另一行的 k ≠ 0 k\neq 0 k=0 倍时,只需考虑 r 1 + k r 2 r_1+kr_2 r1+kr2 的特殊情况:
    D D D 不包含第一行, 那么不影响,若包涵第一行
    D 1 = ∣ r 1 + k r 2 r p . . . r q ∣ = ∣ r 1 r p . . . r q ∣ + k ∗ ∣ r 2 r p . . . r q ∣ = D + k ∗ D 2 D_1=\begin{vmatrix} r_1+kr_2 \\r_p\\ ... \\ r_q\end{vmatrix}=\begin{vmatrix} r_1 \\r_p\\ ... \\ r_q\end{vmatrix}+k*\begin{vmatrix} r_2 \\r_p\\ ... \\ r_q\end{vmatrix}=D+k*D_2 D1=r1+kr2rp...rq=r1rp...rq+kr2rp...rq=D+kD2
    p = 2 p=2 p=2 D 2 = 0 D_2=0 D2=0,否则 D = D 1 − k ∗ D 2 ≠ 0 D=D_1-k*D_2\neq 0 D=D1kD2=0 D 1 , D 2 D_1,D_2 D1,D2 不同为 0
    挺妙的
    注意这个并没有关系非0子式,而只是关心它的阶数,于是我们定义矩阵的秩:
    设在矩阵 A A A中有一个不等于0的 r r r 阶子式 D D D,且所有 r + 1 r+1 r+1 阶(若存在)子式均为 0,那么 r r r 称为矩阵的秩,记做 R ( A ) R(A) R(A)
    那么有一些性质:
    0 ≤ R ( A ) ≤ m i n { n , m } 0\le R(A)\le min\{n,m\} 0R(A)min{n,m}
    R ( A T ) = R ( A ) R(A^\text{T})=R(A) R(AT)=R(A)
    A ∼ B A\sim B AB,则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)
    m a x { R ( A ) , R ( B ) } ≤ R ( A , B ) ≤ R ( A ) + R ( B ) max\{R(A),R(B)\}\le R(A,B)\le R(A)+R(B) max{R(A),R(B)}R(A,B)R(A)+R(B)
    R ( A + B ) ≤ R ( A ) + R ( B ) R(A+B)\le R(A)+R(B) R(A+B)R(A)+R(B),证明:
    ( A + B B ) ∼ ( A B ) \begin{pmatrix} A+B\\B \end{pmatrix}\sim \begin{pmatrix} A\\B \end{pmatrix} (A+BB)(AB)
    R ( A + B ) ≤ R ( A + B B ) = R ( A B ) = R ( A T , B T ) T = ≤ R ( A T ) + R ( B T ) = R ( A ) + R ( B ) R(A+B)\le R\begin{pmatrix} A+B\\B \end{pmatrix}=R\begin{pmatrix} A\\B \end{pmatrix}=R(A^{T},B^{T})^T=\le R(A^T)+R(B^T)=R(A)+R(B) R(A+B)R(A+BB)=R(AB)=R(AT,BT)T=R(AT)+R(BT)=R(A)+R(B)

  • 矩阵的秩与线性方程组联系在一起就厉害得不行
    对于 n n n 元线性方程组 A x = b Ax=b Ax=b
    (1) 无解的充分必要条件是 R ( A ) < R ( A , b ) R(A)<R(A,b) R(A)<R(A,b)
    (2) 有唯一解的充分必要条件是 R ( A ) = R ( A , b ) = n R(A)=R(A,b)=n R(A)=R(A,b)=n
    (3) 有无限多解的充分必要条件是 R ( A ) = R ( A , b ) < n R(A)=R(A,b)<n R(A)=R(A,b)<n
    证明略且较为显然。

  • 定理:矩阵方程 A X = B AX=B AX=B 有解的充分必要条件是 R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B)
    证明:设 A A A m × n m\times n m×n 矩阵, B B B m × l m\times l m×l 矩阵,则 X X X n × l n\times l n×l 矩阵,将 X , B X,B X,B 按列分块,记为:
    X = ( x 1 , x 2 , . . . , x l ) , B = ( b 1 , b 2 , . . . , b l ) X=(x_1,x_2,...,x_l),B=(b_1,b_2,...,b_l) X=(x1,x2,...,xl),B=(b1,b2,...,bl)
    则矩阵方程 A X = B AX=B AX=B 等价于 l l l 个向量方程
    A x i = b i ( i = 1 , 2 , . . . , l ) Ax_i=b_i(i=1,2,...,l) Axi=bi(i=1,2,...,l)
    如果 R ( A ) = r R(A)=r R(A)=r,那么 b ~ i \widetilde b_i b i 的后 m − r m-r mr 行为 0,那么容易发现当有解时 B B B 的后 m − r m-r mr 行一定为 0,故 R ( A , B ) = r = R ( A ) R(A,B)=r=R(A) R(A,B)=r=R(A)

  • 定理 R ( A B ) ≤ m i n { R ( A ) , R ( B ) } R(AB)\le min\{R(A),R(B)\} R(AB)min{R(A),R(B)}
    即矩阵方程 A X = C AX=C AX=C 有解 X = B X=B X=B,于是有 R ( C ) ≤ R ( A , C ) = R ( A ) R(C)\le R(A,C)=R(A) R(C)R(A,C)=R(A)
    同理有 R ( C T ) ≤ R ( B T ) R(C^T)\le R(B^T) R(CT)R(BT),故 R ( A B ) ≤ m i n { R ( A ) , R ( B ) } R(AB)\le min\{R(A),R(B)\} R(AB)min{R(A),R(B)}

  • 向量內积·
    记做 [ x ⃗ , y ⃗ ] = ∑ i x i y i [\vec x,\vec y]=\sum_{i}x_iy_i [x ,y ]=ixiyi,向量正交定义为 [ x ⃗ , y ⃗ ] = 0 [\vec x,\vec y]=0 [x ,y ]=0
    定理:若 n n n 维向量 a 1 , a 2 , ⋯   , a r a_1,a_2,\cdots,a_r a1,a2,,ar 是一组两两正交的向量,则 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an 线性无关
    证明:设有 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn 使
    λ 1 a 1 + λ 2 a 2 + ⋯ + λ r a r = 0 \lambda_1a_1+\lambda_2a_2+\cdots+\lambda_ra_r=0 λ1a1+λ2a2++λrar=0
    a 1 a_1 a1 与上式两端作內积,故有 λ 1 [ a 1 , a 1 ] = 0 ⇒ λ 1 = 0 \lambda_1[a_1,a_1]=0\Rightarrow \lambda_1=0 λ1[a1,a1]=0λ1=0,故 λ i = 0 \lambda_i=0 λi=0 a 1 , a 2 , ⋯   , a r a_1,a_2,\cdots,a_r a1,a2,,ar 线性无关

  • 向量正交化
    这个构造个人觉得很巧妙,我们现在需要将 a 1 , a 2 , ⋯   , a r a_1,a_2,\cdots,a_r a1,a2,,ar 正交化为 b 1 , b 2 , ⋯   , b r b_1,b_2,\cdots,b_r b1,b2,,br
    那么我们构造出一组 b b b 使得 ∀ i ≠ j ∈ [ 1 , r − 1 ] , [ a i , a j ] = 0 \forall i\neq j\in[1,r-1],[a_i,a_j]=0 i=j[1,r1],[ai,aj]=0,然后构造 b r b_r br 满足与前 r − 1 r-1 r1 项內积为 0,那么有:
    b 1 = a 1 b 2 = a 2 − [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 ⋮ b r = a r − [ b 1 , a r ] [ b 1 , b 1 ] b 1 − [ b 2 , a r ] [ b 2 , b 2 ] b 2 − ⋯ − [ b r − 1 , a r ] [ b r − 1 , b r − 1 ] b r − 1 b_1=a_1\\ b_2=a_2-\frac{[b_1,a_2]}{[b_1,b_1]}b_1\\ \vdots\\b_r=a_r-\frac{[b_1,a_r]}{[b_1,b_1]}b_1-\frac{[b_2,a_r]}{[b_2,b_2]}b_2-\cdots -\frac{[b_{r-1},a_r]}{[b_{r-1},b_{r-1}]}b_{r-1} b1=a1b2=a2[b1,b1][b1,a2]b1br=ar[b1,b1][b1,ar]b1[b2,b2][b2,ar]b2[br1,br1][br1,ar]br1
    b i b_i bi 变成单位长度就可以得到标准正交基
    定义:正交矩阵
    A A A 满足 A T A = E A^{\text{T}}A=E ATA=E,则 A A A 为正交矩阵,同时有 A − 1 = A T A^{-1}=A^{\text{T}} A1=AT

特征多项式的一套理论可以看这里 here

  • 相似矩阵
    定义:设 A , B A,B A,B 均为 n n n 阶矩阵,若有可逆矩阵 P P P 使 P − 1 A P = B P^{-1}AP=B P1AP=B ,则成 B B B A A A 的相似矩阵
    定理:若 n n n 阶矩阵 A , B A,B A,B 相似,则 A A A B B B 的特征多项式相同
    ∣ B − λ E ∣ = ∣ P − 1 A P − P − 1 ( λ E ) P ∣ = ∣ P − 1 ( A − λ E ) P ∣ = ∣ P − 1 ∣ ∣ A − λ E ∣ ∣ P ∣ = ∣ A − λ E ∣ |B-\lambda E|=|P^{-1}AP-P^{-1}(\lambda E)P|=\\|P^{-1}(A-\lambda E)P|=|P^{-1}||A-\lambda E||P|=|A-\lambda E| BλE=P1APP1(λE)P=P1(AλE)P=P1AλEP=AλE
    我们发现, A A A 是可以与如下矩阵相似的
    Λ = ( λ 1 λ 2 ⋱ λ n ) \Lambda=\begin{pmatrix}\lambda_1\\ & \lambda_2\\ &&\ddots \\&&&&\lambda_n\end{pmatrix} Λ=λ1λ2λn
    其中 λ i \lambda_i λi 为矩阵的特征值
    如果我们要求 A n A^n An 或是 φ ( A ) \varphi(A) φ(A),这个等价于 ( P Λ P − 1 ) n = P Λ n P − 1 (P\Lambda P^{-1})^n=P\Lambda^nP^{-1} (PΛP1)n=PΛnP1
    如何找到 P P P 满足 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ 为对角矩阵?
    我们有 A P = P Λ AP=P\Lambda AP=PΛ
    发现 A p i = λ i p i Ap_i=\lambda_ip_i Api=λipi p i p_i pi 特征值 λ i \lambda_i λi 对应的特征向量
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值