基于深度学习的调制分类

摘要:

无论使用的是机器学习、深度学习还是强化学习工作流,都可以通过使用现成算法以及 MATLAB 和无线通信产品生成的数据来缩短开发时间。可以轻松地利用 MATLAB 之外的现有深度学习网络;优化设计的训练、测试和验证;并简化 AI 网络在嵌入式设备、企业系统和云上的部署。    此代码演示了如何使用卷积神经网络(CNN)进行调制分类。产生了合成的,信道受损的波形。使用生成的波形作为训练数据,训练CNN以进行调制分类。

关键词AI;MATLABCNN;无线通信

第1章 背景及意义

得益于计算能力和大数据的提高,深度学习在许多应用领域取得了前所未有的发展,如语音和音频处理、自然语言处理、目标检测等。近年来,它在无线通信领域也取得了巨大的发展,例如,调制分类、信道估计、端到端通信和移动边缘计算。

基于深度学习的调制分类自动调用,在没有先验知识的情况下高效地对接收信号进行分类。调制分类是无线通信系统中许多应用的基础步骤,如认知通信系统中的频谱管理和安全通信中的非授权信号检测。传统的调制分类方法要么计算复杂度高,要么严重依赖人工操作。最近,深度学习被成功地引入到信号分类中,它将原始信号数据或其转换馈送到深度神经网络,并在网络输出处立即获得调制类别。与传统的基于专家特征(如基于高阶累积量的特征)的自动调制分类方法相比,它实现了更高的分类精度,同时需要少量额外的计算开销和计算时间。

第2章 实验目的

2.1 实验工具

  1. Communications Toolbox
  2. Deep Learning Toolbox

2.2 实验目的

  1. 学会熟练使用深度学习工具箱和通信工具箱;
  2. 掌握神经网络训练的基本步骤;
  3. 掌握无线通信的调制类型及原理。

第3章 实验过程

        此代码的第一部分演示如何在使用CNN进行调制分类或任何其他任务之前,我们首先需要使用已知(或标记)数据对网络进行训练。第二部分演示如何使用CommunicationToolbox功能(例如调制器、过滤器和信道损伤)来生成综合培训数据。第三部分重点介绍了CNN调制分类的定义、训练和测试。

3.1 利用CNN预测调制类型

CNN可识别以下八种数字和三种模拟调制类型: BPSK,QPSK, 8-PSK, 16-QAM, 64-QAM, PAM4, GFSK, CPFSK, B-FM, DSB-AM, SSB-AM。

(1)加载训练好的网络。

(2)测试CNN,使用CNN来预测帧的调制类型。

训练后的CNN采集1024个信道受损样本,预测每帧的调制类型。生成多个PAM4帧,这些帧受到莱斯多径衰落、中心频率和采样时间漂移以及AWGN的影响。

(3)返回分类器预测;

这类似于艰难的决策,网络正确识别帧为PAM4帧。

(4)绘制分数。

分类器还返回每个帧的得分向量。得分对应于每个帧具有预测调制类型的概率。

3.2 用于训练的波形生成

为每种调制类型生成10,000帧,其中80%用于训练,10%用于验证,10%用于测试。我们在网络训练阶段使用训练和验证框架。最后的分类精度得到使用测试框架。每帧的采样长度为1024个,采样率为200 kHz。对于数字调制类型,八个采样代表一个符号。网络基于单个帧而不是基于多个连续帧(如在视频中)做出每个决策。假设数字和模拟调制类型的中心频率分别为902 MHz和100 MHz。

(1)创建通道损耗

将每一帧通过一个带有AWGN,里奇多径衰落,时钟偏移。本例中的网络是基于单个帧进行决策的,因此每个帧都必须通过独立的信道。

(2)AWGN

该信道以30 dB的信噪比加入AWGN。

(3)赖斯多径

信道将信号通过一个Rician多径衰落信道,使用comm.RicianChannel系统对象。假设一个样本的延迟轮廓,对应的平均路径增益[0 -2-10] dB。K因子为4,最大多普勒频移为4 Hz,相当于902 MHz的步行速度。

(4)时钟偏移

时钟偏移是由于发射器和接收器的内部时钟源不准确造成的。时钟偏移导致用于将信号向下转换为基带的中心频率和数模转换器采样率与理想值不同。信道模拟器使用时钟偏移因子C,表示为C=1+Δclock/106。其中Δclock时钟是时钟偏移。对于每个帧,通道生成一个随机Δclock时钟值从一组均匀分布的值范围为[maxΔclock maxΔclock],其中maxΔclock是最大的时钟偏移。时钟偏移是以百万分之一(ppm)来测量的。对于本例,假设最大时钟偏移为5 ppm。

(5)频率偏移

根据时钟偏移因子C和中心频率对每个帧进行频率偏移。

(6)采样率偏移

对每一帧进行基于时钟偏移因子C的采样率偏移。实现通道,使用interp1函数以新的速率C×fs重采样帧。

(7)组合通道

使用 helperModClassTestChannel 对象将所有三个通道损伤应用到帧中。

(8)波形生成

创建一个循环,为每种调制类型生成信道受损帧,并将这些帧及其相应标签存储在MAT文件中。通过将数据保存到文件中,您无需在每次运行此示例时生成数据。还可以更有效地共享数据。从每一帧的开始移除一个随机数的样本,以移除瞬变,并确保每一帧的起始点相对于符号边界有一个随机的起点。

(9)创建数据存储

使用一个signalDatastore对象来管理包含生成的复杂波形的文件。当每个单独的文件都适合内存,但整个集合不一定适合时,数据存储区特别有用。

(10)复杂信号到实阵列的变换

本例中的深度学习网络需要实际输入,而接收到的信号具有复杂的基带采样。将复信号转换为实值四维阵列。输出帧具有大小1-by-spf-by-2-by-N,其中第一页(第三维度)是同相样本,而第二页是正交样本。当卷积滤波器的大小为1-by-spf时,这种方法确保I和Q中的信息即使在卷积层中也会混合,并更好地利用相位信息。

(11)划分培训、验证和测试数据

接下来将帧划分为训练、验证和测试数据。详细信息请参见helperModClassSplit Data 。

(12)将数据导入内存

神经网络训练是迭代的。在每次迭代时,数据存储从文件中读取数据,并在更新网络系数之前转换数据。如果数据适合计算机的内存,将数据从文件导入内存可消除重复读取文件和转换过程,从而加快训练速度。而是从文件中读取数据并转换一次。

3.3 训练CNN

(1)CNN设计

使用由六个卷积层和一个完全连接层组成的CNN。除最后一个卷积层外,每个卷积层后面都是批量归一化层、整流线性单元(ReLU)激活层和最大池化层。在最后一个卷积层中,最大池层被平均池层取代。输出层具有softmax激活。

(2)配置深度学习工具箱

使用具有 1024 小批量大小的 SGDM 求解器。设置最大的时代数为20,默认情况下,将'ExecutionEnvironment'属性设置为'auto',其中trainNetwork函数使用GPU(如果可用)或使用CPU(如果不可用)。

(3)训练网络/使用已经训练过的网络。

(4)绘制测试帧的混淆矩阵。

第4章 实验结果

帧的实部和虚部的振幅

帧的频谱图

训练进度图

如训练进度图所示,网络在大约20个时期内收敛,准确率超过97%

测试精度

通过获得测试框架的分类精度来评估训练后的网络。结果表明,该网络对这组波形的准确率约为95%。

混淆矩阵

如矩阵所示,网络混淆了16-QAM帧和64-QAM帧。这个问题是预料之中的,因为每帧只携带128个符号,而16-QAM是64-QAM的子集。该网络还混淆了DSB-AM和SSB-AM帧,因为SSB-AM信号只包含DSB-AM信号频谱的一半。

结论与展望

经过本领域的探索和实践,编写了人工智能区分调制信号类型仿真代码,取得了以下结论:

(1)提高调制信号分类准确率:深度学习算法具有强大的模式识别和学习能力,能够从大量的数据中学习到对不同调制信号的特征表达,从而提高调制信号分类的准确率。实验旨在通过深度学习算法的优化和改进,达到更高的分类准确率。

(2)优化通信系统性能:准确分类调制信号可以帮助优化无线通信系统的性能。通过深度学习算法对调制信号进行识别,可以实现智能调制识别和适应性调制选择,使通信系统能够更好地适应不同的信道和环境,提高信号传输的可靠性和效率。

(3)探索深度学习算法的特征提取能力:深度学习能够从原始数据中学习特征,而不需要人工进行特征工程。实验通过深度学习算法对调制信号进行分类,可以探索深度学习算法的特征提取能力,并进一步优化深度学习算法的特征提取过程。

展望:

人工智能通信是一项十分有价值的研究,人工智能能够为无线通信提供有效的技术支持。未来,我们可以在以下方面深入探索:

(1)深度学习模型在无线信号识别中的性能仍有提升的空间。未来需要进一步优化深度学习模型的结构和参数,以提高识别准确度和鲁棒性。另外,跨模态的深度学习方法也值得关注,可以通过融合多个模态的信号信息来提高分类性能。。

(2)小样本学习。现有的无线信号数据集往往规模有限,无法覆盖所有可能的信号样本。因此,如何在小样本条件下进行无线信号识别成为一个重要的研究方向。探索小样本学习的方法,如元学习、迁移学习等,有助于提高无线信号识别的适应性和泛化能力。

(3)实时性与鲁棒性。无线信号的实时性和鲁棒性对于无线通信系统至关重要。未来的研究需要将深度学习模型与实时系统相结合,实现对无线信号的快速识别和调制方式分类。此外,不同环境下无线信号的干扰、噪声等问题也需要进一步研究,以提高模型的鲁棒性和可靠性。

参考文献

  1. 周煜. 基于深度学习的无线信号调制方式识别技术研究[D]. 北京邮电大学, 2019.
  2. 孙姝君, 彭盛亮, 姚育东, 杨喜. 基于深度学习的调制识别综述[J]. 电信科学, 2021, 37(5): 82-90.
  3. 雷志坤. 基于深度学习的调制识别技术研究[J]. 成都: 电子科技大学, 2019.
  4. 张斌, 赵梦伟, 陈永锋, 等. 基于深度学习的自动调制分类[J]. 电子测量技术, 2018, 23.
  5. 黄杰, 张顺生, 陈爽. 基于深度学习网络融合的自动调制分类方法[J]. Journal of Signal Processing, 2023, 39(1).
  6. 桂祥胜, 洪居亭, 代华建, 等. 一种基于卷积神经网络的信号调制方式识别方法[J]. 现代计算机, 2019 (10): 18-22.

  • 9
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值