主流大语言模型的技术原理细节

1.比较 LLaMA、ChatGLM、Falcon 等大语言模型的细节:tokenizer、位置编码、Layer Normalization、激活函数等。2. 大语言模型的分布式训练技术:数据并行、张量模型并行、流水线并行、3D 并行、零冗余优化器 ZeRO、CPU 卸载技术 ZeRo-offload、混合精度训练、激活重计算技术、Flash Attention、Paged Attention。3. 大语言模型的参数高效微调技术:prompt tuning、prefix tuning、adapter、LLaMA-adapter、 LoRA。

0. 大纲

1. 大语言模型的细节
1.0 transformer 与 LLM

1.1 模型结构

1.2 训练目标

1.3 tokenizer

1.4 位置编码

### 大模型的技术原理 大模型(Large Model 或 Foundation Model)指的是拥有大量参数和复杂结构的机器学习模型,这类模型具备处理海量数据的能力并能完成多种复杂的任务,比如自然语言处理、计算机视觉以及语音识别等[^2]。 #### 模型架构设计 构建一个高效的大规模深度学习模型涉及多个方面: - **网络深度与宽度的选择**:这直接影响到模型的复杂性和其表达能力。更深更宽的网络通常意味着更强的表现力但也伴随着更高的计算成本。 - **激活函数的应用**:为了赋予神经网络非线性的特性,需选用恰当类型的激活函数来实现这一点;常见的有ReLU及其变体、Sigmoid、Tanh等不同形式,在实际操作中应依据具体应用场景做出最佳选择[^3]。 - **损失函数的设计**:这是评估预测值同目标真值间差距的关键指标之一,对于监督式学习尤为如此。交叉熵常被用于分类问题而均方误差则更适合回归类的任务场景。 - **优化器配置**:通过梯度下降法不断迭代更新权重直至找到全局最优解或局部极小值点附近的位置。Adam因其良好的收敛速度和平稳性成为当下最流行的一种自适应矩估计方法。 ```python import torch.optim as optim optimizer = optim.Adam(model.parameters(), lr=0.001) ``` #### 训练过程概述 当上述准备工作完成后便进入了正式训练阶段。此过程中会反复执行前向传播—>反向传播—>参数更新这一循环直到满足预设条件为止。期间还需注意监控验证集上的性能表现以防过拟合现象发生,并适时采取早停策略(Early Stopping)以节省资源消耗。 ```python for epoch in range(num_epochs): model.train() running_loss = 0.0 for inputs, labels in train_loader: optimizer.zero_grad() # 清除之前的梯度 outputs = model(inputs) # 前向传播 loss = criterion(outputs, labels) # 计算损失 loss.backward() # 反向传播 optimizer.step() # 更新参数 running_loss += loss.item() print(f'Epoch {epoch}, Loss: {running_loss/len(train_loader)}') ``` ### 提升编程技能的影响 值得注意的是,参与基于大模型的应用开发不仅有助于深入理解前沿的人工智能理论和技术细节,而且还能显著增强个人解决实际工程难题的实力——无论是算法层面还是系统集成角度皆然。掌握诸如PyTorch/TensorFlow这样的主流框架之后,开发者们往往能够在实践中积累宝贵经验从而提升自身的编码质量与效率[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI周红伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值