Anchor Loss论文学习

论文《Anchor Loss》提出了根据预测难度动态调整交叉熵损失比例的方法,主要用于分类和人体姿态估计任务。该损失函数在预测难度较大的样本上施加更多惩罚,从而改善网络对困难案例的区分能力。实验结果显示,Anchor Loss在图像分类和人体姿态估计上表现出良好的效果。
摘要由CSDN通过智能技术生成

论文名称Anchor Loss: Modulating Loss Scale based on Prediction Difficulty

发布时间2019.09.24

作者:加州理工

论文地址https://arxiv.org/abs/1909.11155v1

摘要

作者提出了一种根据预测难度自动调整cross entropy比例的loss

在预测结果中,我们只会选择最高置信分作为输出,而不会考量这个目标本身的预测难度。本文的思想是根据正样本与负样本的预测分值的gap,做为预测难度属性,结合难度属性的信息动态的调整loss的比例。

作者主要在分类网络和人体姿态估计网络中试验了这种方法,都取得了不错的效果。

简介

q_*anchor probabilityanchor loss会参考q_*来评价背景类别(不是目标的类别都是背景类别)的难易程度。如果背景类别的分值大于q_*,则认为这个背景类别为难学,如果背景类别的分值小于q_*,则认为这个背景类别容易学。

这里q_*一般会使用正确类别的预测分值。

因为左右身体的对称性,网络常常很难区分左右,或者说网络对于相似的物体比较难区分。虽然在正确类别上的分值可能也不低,但是最终会取最高的分值,可能导致预测错误。AL就是要对类别预测错误,并且有比较高的分值时,给更多的惩罚。左图如果背景倍识别为某个类别,ALCE的比较曲线。可以看出当预测分值大于0.5loss会很快的增加,这样对于预测错误的高分值有很快的抑制作用。

a.C1是正确的类别,C1预测的分值为0.1,如果其他类别预测的分值高于0.1,可以看到anchor loss方法会有更快上升的惩罚。
b.C1是正确的类别,C1预测的分值为0.5,如果其他类别的预测分值小于0.5anchor loss
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值