论文名称:Anchor Loss: Modulating Loss Scale based on Prediction Difficulty
发布时间:2019.09.24
作者:加州理工
论文地址:https://arxiv.org/abs/1909.11155v1
摘要:
作者提出了一种根据预测难度自动调整cross entropy比例的loss。
在预测结果中,我们只会选择最高置信分作为输出,而不会考量这个目标本身的预测难度。本文的思想是根据正样本与负样本的预测分值的gap,做为预测难度属性,结合难度属性的信息动态的调整loss的比例。
作者主要在分类网络和人体姿态估计网络中试验了这种方法,都取得了不错的效果。
简介
是anchor probability,anchor loss会参考来评价背景类别(不是目标的类别都是背景类别)的难易程度。如果背景类别的分值大于,则认为这个背景类别为难学,如果背景类别的分值小于,则认为这个背景类别容易学。
这里一般会使用正确类别的预测分值。
因为左右身体的对称性,网络常常很难区分左右,或者说网络对于相似的物体比较难区分。虽然在正确类别上的分值可能也不低,但是最终会取最高的分值,可能导致预测错误。AL就是要对类别预测错误,并且有比较高的分值时,给更多的惩罚。左图如果背景倍识别为某个类别,AL与CE的比较曲线。可以看出当预测分值大于0.5后loss会很快的增加,这样对于预测错误的高分值有很快的抑制作用。
a.C1是正确的类别,C1预测的分值为0.1,如果其他类别预测的分值高于0.1,可以看到anchor loss方法会有更快上升的惩罚。
b.C1是正确的类别,C1预测的分值为0.5,如果其他类别的预测分值小于0.5,anchor loss