管理类联考——逻辑——知识篇——第五章 假言命题(必考)(最重要的基础)

文章详细阐述了逻辑中的假言命题,包括充分条件和必要条件假言命题的定义、常见形式和转换规则。通过建模和公式化处理,解释了如何进行假言命题的解题,包括真假判断、匹配题和推理。并提供了实例来说明这些概念的应用。
摘要由CSDN通过智能技术生成

第五章 假言命题(必考)(最重要的基础)

假言命题:陈述某一事物情况是另一件事物情况的条件的命题。假言命题中的充分条件假言命题和必要条件假言命题是联考逻辑最重要的必考考点。1
*本质为:充分必要:充分必要。23

一、两种假言命题-解题第一步:建模

1、充分条件假言命题(那么,就,则)
充分条件假言命题常见形式:关键字在于连词,“那么,就,则”
① 如果A,那么(就,则)B
② 只要A,就B
③ 若A,则B
④ 要想A,必须先B4
充分条件假言命题统一公式化为:A→B5

2、必要条件假言命题(才)
必要条件假言命题常见形式:关键字在于连词,“才”6
① 只有A,才B
② A,才B
③ A是B的基础(前提)7
必要条件假言命题统一公式化为:BA

3、特殊——“除非A,否则B”&“因为A,所以B”
(1)除非A,否则B:
“除非”:双重否定表肯定/强调,可以去掉“除非”。化简为:A否,则B。得:AB,AB。89
(2)除非A,才B:
去掉“除非”,化简为:A,才B。10
(3)A,除非B:
去掉“除非”,还原为:(否则)A,B。11
总结:“除非A,否则B”=“除非B,否则A”=“A或B”,得:非A→B=非B→A=A或B

(4)因为A,所以B:
没有确定模型,不是逻辑用语,A是B的众多原因之一。

二、解题第二步:假言命题公式化转换

∩ ∪ ∧ ∨ ⊃ ⊂ ∅ ⟺ ┐

一、对于假言命题AB的公式化处理(等价,不确定,矛盾)12

1.对于原命题A→B,有:①逆命题B→A;②否命题┐A→┐B;③逆否命题┐B→┐A。
2.A→B的等价命题为:①逆否命题┐B→┐A;②┐A∨B(由矛盾命题的矛盾可推出)。13
3.A→B的不确定命题为:①逆命题B→A;②否命题┐A→┐B。
4.A→B的矛盾命题为:A∧┐B(可推其矛盾为┐A∨B,等价于A→B)。1415

考点1:前后命题“真假”/“A→B”等价“非A或B”

假言命题中的前、后命题可确认为“真”或“假”,整个命题都可确认“真”或“假”16

假言命题:→,且,或
A B A→B
××
×
××
前假或后真:非A或B

得结论:A假或B真→非A或B→“A→B”:
变形:非A或B”等价于“A→B”:
非A→“A→B”
非A→“非A或B”
B→“A→B”
B→“非A或B”

考点2:匹配题

方法:列表进行排除

考点3:假言命题推理(逆否的考察)

①建模
②公式化推理
1)否后则否前;A→B等价于:①逆否命题┐B→┐A;②┐A∨B(逆否命题)
2)肯前则肯后;
3)否前、肯后无结论。

考点4:真假话题(矛盾的考察)

①建模;②公式化处理;③找矛盾(易找且唯一确定):A→B的矛盾命题:A∧┐B(真假判断,必一真一假);④包含,⑤定其余。
*矛盾是唯一且确定:“A是B”与“A不是B,且C是D”不矛盾,因为不唯一,不确定。

要点总结:假言命题解题

第一步:建模(建立逻辑模型):“那么,就,则”前→后;“才”后→前。
第二步:公式化处理:
①A→B等价于:①逆否命题┐B→ ┐A;② ┐A∨B
②A→B的矛盾命题:A∧ ┐B(真假判断,必一真一假)
③否前、肯后无结论。
在这里插入图片描述

三、假言公式汇总

在这里插入图片描述

*假言和联言汇总表:
A→B,A且B,A或B,要么A要么B的关系:
在这里插入图片描述

2.只有当律师萨特参加时,泰勒和瓦伦丁才能签订合同。而萨特只在自己的律师事务所参与合同签订工作。只有杨格陪同,泰勒才去萨特的事务所。
如果上面的陈述是真实的,则下面哪项也必定是真实的?
A.杨格不去事务所,泰勒和瓦伦丁无法签订合同。
B.萨特参加,泰勒和瓦伦丁在事务所签订合同。
C.杨格去了事务所,泰勒和瓦伦丁签订合同。
D.泰勒和瓦伦丁没能签订合同,是因为律师萨特没有参加。
E.杨格去了事务所,萨特必须参加合同的签订。
2. 【解析】选 A。
泰勒和瓦伦丁签订合同→萨特参加;泰勒去事务所→杨格去。所以,奉勒和瓦伦
丁是在萨特的事务所签订合同的,杨格在场。对于选项 A,如果杨格不去事务所,
泰勒就不会去,则合同就无法签订,故选项 A 为正确答案。选项 B 不一定正确,
因为有萨特参加,但未必就能签订合同。杨格去事务所,但泰勒不一定就会去。
所以选项 C 也不一定正确,选项 D 不能推出。选项 E 不一定正确。

请添加图片描述

  1. 【解析】选 C。
    题干模型为“没机会或没能力→不成功”,C 选项与题干完全等价。
    5.如果题干的断定为真,则以下哪项一定为假?(题干的矛盾(反例)) 矛盾为:(成功)且非(能且机)
    A.张某既有能力,又有机会,但可惜不成功。
    B.抓住了机会的孙某终获成功,尽管他缺乏能力。
    C.有能力的王某终获成功,是抓住了机会。
    D.李某有能力但不成功,是苦于没机会。
    E.孙某自认为是成功者,但外界认为他至多得益于某种机会,但实际并无能力。
    【解析】选 B。
    题干转化为“成功→机会”且“成功→能力”,B 选项“成功且非能力”为题干的矛盾,是反例。
  1. 【解析】选 B。
    题干转化为“成功→机会”且“成功→能力”,B 选项“成功且非能力”为题干的矛盾,是反例。

  1. 解析-假言:假设前提。
    假言命题真假判定:指的是整个命题逻辑关系的真假。 ↩︎

  2. 例如:建筑是充分条件,地基是必要条件。地基无法推出建筑,建筑可推出地基。 ↩︎

  3. 解析:充分与必要之间的关系
    充分:有我就有你。
    必要:没我就没你。(非人→非男人)
    例如:男人和人:男人是充分,元素只要是在男人里的,就是在人。但是在人里面,不一定是男人。 ↩︎

  4. B是前提/必要条件,A是后果,A→B(充分→必要) ↩︎

  5. 男人→人、小范围→大范围、充分→必要、无法逆推,如人推不出男人 ↩︎

  6. 才:需要翻译为“才可能”
    例:
    只有男人,才是人。×
    只有人,才是男人。(逻辑表述正确)
    只有先是人,才可能是男人。(语言通顺) ↩︎

  7. “基础/前提”是必要条件
    例如:地基是上层建筑的基础:建筑是充分条件,地基是必要条件。有地基无法推出一定有建筑,有建筑可推出一定有地基。 ↩︎

  8. 例如,除非下雨,否则我外出。得:否下雨我外出。得:下雨或外出两者其一为真。 ↩︎

  9. 真题1
    4-5 题基于以下题干:
    除非遇到机会同时又有能力,否则不可能成功。这就是成功的奥秘。在成功人中找不到反例。(模型:非(机且能)→非成功;逆否:成功→(机且能))
    4.以下哪项最符合题干的断定?
    A.有能力者抓住机会就一定能成功。(能且机)→成功 (不确定)
    B.有能力没机会不一定能成功。(不可能成功→不一定能成功,为真,但是题干不是选择“哪个为真”)
    C.有机会没能力一定不能成功。 (等价)
    D.不成功者一定既没机会也没有能力。
    E.不成功者如果遇到过机会,那一定是没有能力。 ↩︎

  10. 例如,除非下雨,我才不去。得:不去→下雨。 ↩︎

  11. 例如,我去,除非你要去。得:(否则)我去,除非你要去。得:你不去,我去。我不去,你去。 ↩︎

  12. 在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述 ↩︎

  13. 我爱你=不爱你不是我
    我爱你(如果一个人是我,那么这个人爱你)
    =如果一个人不爱你,那么,这个人不是我。
    或者我→爱你。=非爱你→非我。
    不能翻译为:我爱→你。=非你→非我爱。(我爱你,也可以同时爱别人) ↩︎

  14. 例:父亲对儿子说:如果我周末不加班,就带你去迪士尼。父亲的承诺是?
    ①带儿子去迪士尼(×)
    ②周末加班(×)
    ③周末不加班和带儿子去迪士尼之间的充分必要关系,周末不加班→带儿子去迪士尼。(√)
    违背承诺:周末不加班,也没带儿子去迪士尼。得:A且非B。
    符合承诺:
    ①不加班且去。(A且B)
    ②加班且没去。(非A且非B)(不算违背承诺,前后都为假,证明不了逻辑关系为假,即逻辑上为真)
    ③加班且去。(非A且B)(不算违背承诺,证明不了逻辑关系为假,则为真) ↩︎

  15. 真题1
    4-5 题基于以下题干:
    除非遇到机会同时又有能力,否则不可能成功。这就是成功的奥秘。在成功人中找不到反例。(模型:非(机且能)→非成功;逆否:成功→(机且能))
    4.以下哪项最符合题干的断定?
    A.有能力者抓住机会就一定能成功。(能且机)→成功 (不确定)
    B.有能力没机会不一定能成功。(不可能成功→不一定能成功,为真,但是题干不是选择“哪个为真”)
    C.有机会没能力一定不能成功。 (等价)
    D.不成功者一定既没机会也没有能力。
    E.不成功者如果遇到过机会,那一定是没有能力。
    【解析】选 C。
    题干模型为“没机会或没能力→不成功”,C 选项与题干完全等价。
    5.如果题干的断定为真,则以下哪项一定为假?(题干的矛盾(反例)) 矛盾为:(成功)且非(能且机)
    A.张某既有能力,又有机会,但可惜不成功。
    B.抓住了机会的孙某终获成功,尽管他缺乏能力。
    C.有能力的王某终获成功,是抓住了机会。
    D.李某有能力但不成功,是苦于没机会。
    E.孙某自认为是成功者,但外界认为他至多得益于某种机会,但实际并无能力。 ↩︎

  16. 例(加深理解):①如果地球不是方的,那么1+1=2(√);
    ②如果地球不是方的,那么1+1=3(×);
    ③如果地球是方的,那么1+1=3(√);非A且非B“为真”→A→B为真
    ④如果地球是方的,那么1+1=2(√)。非A且B“为真”→A→B为真
    ①因前命题为“真”,后命题为“真”,可判断整个命题为“真”。则②为①的矛盾命题为“假”。
    ③和④:当假言命题的前提/前命题无法证明为“假”即可逻辑判定为“真”,因为后命题因为前命题为假,所以无法证明为“假”,即可逻辑上判定为“真”。
    注意:不要去以因果关系去判断。
    (“否前”就一定真,“肯前否后”一定假)
    例2:
    题干:如果不加班,就去旅游(√)。
    即加班旅游(√)、加班旅游(√)。 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fo安方

觉得俺的文章还行,感谢打赏,爱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值