一、考试大纲及解读
大纲内容 | 解读 | 备注 |
---|---|---|
综合能力考试中的数学基础部分主要考查考生的运算能力、逻辑推理能力、空间想象能力和数据处理能力,通过问题求解和条件充分性判断两种形式来测试 | 考纲总体要求考生掌握四种能力.运算能力要求考生不能使用计算器,只能口算或手算,不能出现粗心错误;逻辑推理能力要求考生掌握数学的逆向分析推导,以条件充分性判断题来进行考查;空间想象能力主要体现在几何图形的想象分析能力,尤其对空间立体结构的判断更为重要;数据处理能力主要体现在排列组合和概率,尤其对图表的分析更为重要.因此,考生在复习时,要紧紧围绕这四种能力,并且时刻检验自己是否达到考试要求。 | |
(一)算术 1.整数 (1)整数及其运算 (2)整除、公倍数、公约数 (3)奇数、偶数 (4)质数、合数 2.分数、小数、百分数 3.比与比例 4.数轴与绝对值 | 本部分内容主要是小学和初中内容,概念较多,注意概念的区别和联系。核心考点为:公倍数、公约数,质数、合数,绝对值。尤其绝对值是必考点,每年出题很灵活。 此外,考纲上没有写的应用题内容是考试的重点,题量和分值很多。 | |
(二)代数 1.整式 (1)整式及其运算 (2)整式的因式与因式分解 2.分式及其运算 3.函数 (1)集合 (2)一元二次函数及其图像 (3)指数函数、对数函数 4.代数方程 (1)一元一次方程 (2)一元二次方程 ( 3)二元一次方程组 5.不等式 (1)不等式的性质 (2)均值不等式 (3)不等式求解 一元一次不等式(组),一元二次不等式,简单绝对值不等式,简单分式不等式 6.数列、等差数列、等比数列 | 本部分内容主要是初中和高中的内容,代数的特点是:公式多、函数多、恒等变形多。特值法是本部分解题的捷径。 因式与因式分解是本部分的基础,方程和不等式都要用到因式分解。一元二次函数及其图像是本部分的核心,与方程和不等式联系密切。 一元二次方程的主要内容是根的情况与特征,不等式的难点是均值不等式,要会求解最值,易错点是绝对值方程和不等式的解法。 数列公式很多,需要在理解的基础上记忆公式,这样才能活学活用。 | |
(三)几何 1.平面图形 (1)三角形 (2)四边形(矩形、平行四边形、梯形) (3)圆与扇形 2.空间几何体 (1)长方体 (2)柱体 (3)球体 3.平面解析几何 (1)平面直角坐标系 (2)直线方程与圆的方程 (3)两点间距离公式与点到直线的距离公式 | 近年几何命题灵活,考生失分很多,三角形是平面几何的核心,内容较多,题型灵活。 空间几何要注意图形的想象,尤其内切球和外接球。 解析几何的核心是直线,距离公式是必考点,考纲上没有注明的内容,比如位置关系、对称、最值等是考试的重点。 | |
(四)数据分析 1.计数原理 (1)加法原理、乘法原理 (2)排列与排列数 (3)组合与组合数 2.数据描述 (1)平均值 (2)方差与标准差 (3)数据的图表表示直方图,饼图,数表 3.概率 (1)事件及其简单运算 (2)加法公式 (3)乘法公式 (4)古典概型 (5)伯努利概型 | 本部分是考生的共同短板,失分很多。排列组合要掌握考纲上没有写的各种题型和思路,数据描述要掌握平均值和方差的计算公式及技巧。古典概型与排列组合密切相关,是概率的难点,所以排列组合是学好概率的基础。独立事件是概率的核心,乘法公式和伯努利概型都与独立事件密切相关。 |
二、试卷内容与题型结构
- 数学分值
数学共25道题目,每题3分,共75分,占综合能力总分200分的37.5%。 - 数学题型
两种题型:问题求解15小题,为五选一常规单选题,每小题3分,共45分;条件充分性判断10小题,为五选一非常规单选题,每小题3分,共30分。 - 答题方式
答题方式为闭卷、笔试,不允许使用计算器。