⛲️
一、考点讲解
1.题目特征
如果给几种颜色来填涂所给的图形,就是涂色问题。
2.解题方法
可以按照图形逐一依次填涂,也可以按照所用颜色的种数进行分类讨论。
二、考试解读
(1)涂色问题一般要求相邻的颜色不能相同,所以注意颜色的选取;
(2)涂色问题重点掌握区域涂色,尤其在逻辑考题也会涉及;
(3)考试频率级别:低。
三、命题方向
考向1:区域涂色
思路:按照所给的区域逐一填涂或者按照使用颜色的种数来分类讨论。
考向2:线段涂色
思路:对线段涂色问题,要注意对各条线段依次涂色,主要方法有:
①根据共用了多少颜色分类讨论;②根据相对线段是否同色分类讨论。
🐟——公式总结性,但需要记忆公式
涂色问题技巧总结
涂色问题分为以下两种:
(1)直线涂色:简单的乘法原理。
(2)环形涂色公式:把一个环形区域分为k块,每块之间首尾相连,用s种颜色去涂,要求相邻两块颜色不同,则不同的涂色方法有
N=(s—1)k+(s—1)(−1)kN=(s—1)^k+(s—1)(-1)^kN=(s—1)k+(s—1)(−1)k,
式中,s为颜色数(记忆方法:se色),k为环形被分成的块数(记忆方法:kuai 块)。


🐬
涂色一般要求相邻区域不同色,每个区域只能涂一种颜色,按照题目所给的图形,按顺序将每个区域涂好即可。
其他
1.题目特征
如果给几种颜色来填涂所给的图形,就是涂色问题。
2.解题方法
可以按照图形逐一依次填涂,也可以按照所用颜色的种数进行分类讨论。

本文介绍了涂色问题的解题方法,包括图形逐个填涂和颜色分类讨论,强调了区域涂色和线段涂色的思路,给出了直线涂色的乘法原理公式以及环形涂色的计算公式。还提及了涂色时相邻区域颜色不同的要求和解题策略。
277

被折叠的 条评论
为什么被折叠?



