泛函分析笔记1:距离空间

最近在看泛函分析,感觉泛函分析概念众多,在阅读的时候记录一些重要的概念,方便自己随时查阅。

  1. 距离空间 X X X是任一非空集合,若对于 X X X中的任何两点 x x x, y y y,均有一个实数 d ( x , y ) d(x,y) d(x,y)与它对应,满足① d ( x , y ) ≥ 0 d(x,y)\ge 0 d(x,y)0(非负性);② d ( x , y ) = 0 d(x,y)=0 d(x,y)=0当且仅当 x = y x=y x=y(严格正);③ d ( y , x ) = d ( x , y ) d(y,x)=d(x,y) d(y,x)=d(x,y)(对称性);④ d ( x , y ) ≤ d ( x , z ) + d ( z , y ) d(x,y)\le d(x,z)+d(z,y) d(x,y)d(x,z)+d(z,y)(三角不等式)。则称 d ( x , y ) d(x,y) d(x,y) X X X中的一个距离,定义了距离 d d d的集合称为距离空间,记为 ( X , d ) (X,d) (X,d),有时简单记作 X X X

  2. 开球 ( X , d ) (X,d) (X,d)是一个距离空间, r > 0 r>0 r>0 B ( x 0 , r ) = { x ∈ X ∣ d ( x , x 0 ) < r } B\left(x_{0}, r\right)=\left\{x \in X \mid d\left(x, x_{0}\right)<r\right\} B(x0,r)={xXd(x,x0)<r},以 x 0 x_0 x0为中心,以 r r r为半径。

  3. 闭球 ( X , d ) (X,d) (X,d)是一个距离空间, r > 0 r>0 r>0 B ˉ ( x 0 , r ) = { x ∈ X ∣ d ( x , x 0 ) ≤ r } \bar{B}\left(x_{0}, r\right)=\left\{x \in X \mid d\left(x, x_{0}\right) \leq r\right\} Bˉ(x0,r)={xXd(x,x0)r},以 x 0 x_0 x0为中心,以 r r r为半径。

  4. 球面 ( X , d ) (X,d) (X,d)是一个距离空间, r > 0 r>0 r>0 S ( x 0 , r ) = { x ∈ X ∣ d ( x , x 0 ) = r } S\left(x_{0}, r\right)=\left\{x \in X \mid d\left(x, x_{0}\right)=r\right\} S(x0,r)={xXd(x,x0)=r},以 x 0 x_0 x0为中心,以 r r r为半径。

  5. 有界集 X X X是一个距离空间, A ⊂ X A\subset X AX,若存在开球 B ( x 0 , r ) B(x_0,r) B(x0,r),使得 A ⊂ B ( x 0 , r ) A\subset B(x_0,r) AB(x0,r),则称 A A A是有界集。

  6. 内点 X X X是一个距离空间, G ⊂ X G\subset X GX,对 x 0 ∈ G x_0\in G x0G,若存在开球 B ( x 0 , r ) B(x_0,r) B(x0,r),使得 B ( x 0 , r ) ⊂ G B(x_0,r)\subset G B(x0,r)G,则称 x 0 x_0 x0 G G G的内点。

  7. 开集 X X X是一个距离空间, G ⊂ X G\subset X GX,若 G G G的每一点都是内点,则称 G G G是开集。对 x ∈ X x\in X xX,包含 x x x的任意一个开集称为 x x x的一个邻域。

    • 全空间和空集都是开集。
    • 任意多个开集的并集是开集。
    • 有限多个开集的交集是开集。
  8. 连续映射 ( X , d ) (X,d) (X,d) ( X 1 , d 1 ) (X_1,d_1) (X1,d1)是距离空间 T : X → X 1 T:X\rightarrow X_1 T:XX1是一个映射 x 0 ∈ X x_0\in X x0X,如果对于任给的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,当 d ( x , x 0 ) < δ d(x,x_0)<\delta d(x,x0)<δ d 1 ( T ( x ) , T ( x 0 ) ) < ε d_1(T(x),T(x_0))<\varepsilon d1(T(x),T(x0))<ε,则称 f f f x 0 x_0 x0连续,若在 X X X中的每一点都连续则称 T T T X X X上连续。

    • T T T是连续的充要条件: ( X 1 , d 1 ) (X_1,d_1) (X1,d1)中任何开集的原像仍然是 ( X , d ) (X,d) (X,d)中的开集。
    • T T T x 0 x_0 x0是连续的充要条件:对每个满足条件 lim ⁡ x n = x 0 \lim x_{n}=x_{0} limxn=x0的点列有 lim ⁡ T ( x n ) = T ( lim ⁡ x n ) \lim T\left(x_{n}\right)=T\left(\lim x_{n}\right) limT(xn)=T(limxn)
  9. 等距映射 d ( x , y ) = d 1 ( T ( x ) , T ( y ) ) , ∀ x , y ∈ X d(x, y)=d_{1}(T(x), T(y)), \forall x, y \in X d(x,y)=d1(T(x),T(y)),x,yX,称 T T T为等距映射。

  10. 闭集 X X X是一个距离空间,一个集合 A ⊂ X A\subset X AX是闭的,如果它的补集 A c = X \ A A^{c}=X \backslash A Ac=X\A是开的。

    • 全空间和空集是闭集。
    • 任意多个闭集的交是闭集。
    • 有限个闭集的并是闭集。
  11. 接触点 X X X是一个距离空间, A ⊂ X A\subset X AX x ∈ X x\in X xX,如果 ∀ ε > 0 \forall \varepsilon>0 ε>0,球 B ( x , ε ) B(x,\varepsilon) B(x,ε)中都包含 A A A中的点,即 B ( x , ε ) ∩ A ≠ ∅ B(x,\varepsilon)\cap A \neq \emptyset B(x,ε)A=,则称 x x x A A A的接触点。

    • A A A的接触点可能属于 A A A,也可能不属于 A A A A A A里面挖掉一点)。
    • A A A中的点一定是 A A A的接触点。
  12. 聚点 X X X是一个距离空间, A ⊂ X A\subset X AX x ∈ X x\in X xX,如果 ∀ ε > 0 \forall \varepsilon>0 ε>0,球 B ( x , ε ) B(x,\varepsilon) B(x,ε)中都包含 A A A中不同于 x x x的点,即 B ( x , ε ) ∩ ( A ∖ { x } ) ≠ ∅ B(x,\varepsilon)\cap (A\setminus \{x\}) \neq \emptyset B(x,ε)(A{x})=,则称 x x x A A A的聚点。

    • A A A中的聚点一定是 A A A的接触点,反过来不是。
  13. 闭包 X X X是一个距离空间, A ⊂ X A\subset X AX,则 A A A的接触点的全体称为 A A A的闭包,记为 A ‾ \overline{A} A。因为

    • A A A中的点一定是 A A A的接触点,所以 A ⊂ A ‾ A\subset \overline{A} AA
    • X X X是一个距离空间, A ⊂ X A\subset X AX,则 A A A是闭集的充要条件是 A = A ‾ A=\overline{A} A=A
    • X X X是一个距离空间, A ⊂ X A\subset X AX,则 A A A是闭集当且仅当 A A A中收敛点列 { x n } ⊂ A \{x_n\}\subset A {xn}A的极限属于 A A A。也即闭集里的极限运算是封闭的。
  14. 点到集合的距离 X X X是一个距离空间, A ⊂ X A\subset X AX, x ∈ X x\in X xX,称 d ( x , A ) = i n f { d ( x , ω ) ∣ ω ∈ A } d(x,A)=\mathrm{inf}\{d(x,\omega)|\omega\in A\} d(x,A)=inf{d(x,ω)ωA}为点 x x x到集合 A A A的距离。

    • A ‾ = { x ∣ d ( x , A ) = 0 } \overline{A}=\{x|d(x,A)=0\} A={xd(x,A)=0}
    • A ‾ \overline{A} A是包含 A A A的最小闭集。
  15. 稠密集:设 A A A, B B B是距离空间 X X X中的点集,如果 B ‾ ⊃ A \overline{B}\supset A BA,称 B B B A A A中稠密。(没有要求 B ⊂ A B\subset A BA

  16. 可分距离空间 X X X是一个距离空间,如果 X X X存在一个可数稠密子集,则 X X X是可分的。对于子集 A ⊂ X A\subset X AX,如果 X X X存在可数子集 B B B,使得 B B B A A A中稠密,则 A A A是可分的。

  17. 列紧集 X X X是一个距离空间,如果 X X X的每一个无穷点列都有一个收敛的子列,则 X X X是列紧的。若 A ⊂ X A\subset X AX,如果 A A A的每一个无穷点列都有一个收敛的子列, A A A集合是列紧的。

  18. 自列紧集:闭的列紧集是自列紧的。

    • 列紧集的子集是列紧的。
    • 集合 A A A是自列紧的,收敛子列的极限必须在 A A A中。
  19. 有界集 X X X是一个距离空间, A ⊂ X A\subset X AX是列紧集,则 A A A是有界集。

    • 自列紧集是有界闭集。
    • 在一般的距离空间里,有界的闭集不一定是列紧的。
    • f f f是定义在列紧的距离空间 ( X , d ) (X,d) (X,d)的实值连续函数,则 f f f是有界的: M = sup ⁡ { f ( x ) ∣ x ∈ X } , m = inf ⁡ { f ( x ) ∣ x ∈ X } M=\sup\{f(x)|x\in X\},m=\inf\{f(x)|x\in X\} M=sup{f(x)xX},m=inf{f(x)xX}都是有限的,进一步存在 x max ⁡ x_{\max} xmax x min ⁡ x_{\min} xmin使得 f ( x max ⁡ ) = M , f ( x min ⁡ ) = m f(x_{\max})=M, f(x_{\min})=m f(xmax)=M,f(xmin)=m
    • (Arzelà定理) C ( a , b ) C(a,b) C(a,b)中的子集 A A A是列紧的充要条件是 A A A中的函数一致有界和等度连续。
  20. Cauchy列 ( X , d ) (X,d) (X,d)是一个距离空间, { x n } n = 1 ∞ ⊂ ( X , d ) \{x_n\}_{n=1}^{\infty}\subset (X,d) {xn}n=1(X,d),若对任意的 ε > 0 \varepsilon>0 ε>0,存在正整数 N N N,当 m , n > N m,n>N m,n>N,有 d ( x n , x m ) < ε d(x_n,x_m)<\varepsilon d(xn,xm)<ε,则 { x n } \{x_n\} {xn}是一个Cauchy列

    • { x n } \{x_n\} {xn}是距离空间 ( X , d ) (X,d) (X,d)的Cauchy列,则集合 { x 1 , x 2 , ⋯   } \{x_1,x_2,\cdots\} {x1,x2,}是有界的。
    • 收敛的点列一定是Cauchy列。但在一般的距离空间里Cauchy列不一定收敛。
  21. 完备空间:距离空间 ( X , d ) (X,d) (X,d)的任意Cauchy列在 X X X中都收敛,则距离空间 X X X是完备的。【有了完备性才好进行极限运算(微积分),并且判断点列的收敛性仅需要判断它是否是Cauchy列】

    • 完备空间的任何一个闭子空间都是完备的。
    • 列紧空间一定是完备的。
    • X X X是一个距离空间, { x n } \{x_n\} {xn} X X X中的Cauchy列,如果 { x n } \{x_n\} {xn}有一个子列 { x n k } \{x_{n_k}\} {xnk}收敛到 x 0 x_0 x0,则 { x n } \{x_n\} {xn}也收敛到 x 0 ( n → ∞ ) x_0(n\rightarrow\infty) x0(n)
  22. 距离空间的完备化:做闭包,加入所有原来空间没有的Cauchy列的极限进行扩展。

    • 任何距离空间 ( X , d ) (X,d) (X,d)都存在一个完备的距离空间 ( X ~ , d ~ ) (\tilde{X},\tilde{d}) (X~,d~),使得 ( X , d ) (X,d) (X,d) ( X ~ , d ~ ) (\tilde{X},\tilde{d}) (X~,d~)的一个稠子空间等距,在等距的意义下,这样的空间 ( X ~ , d ~ ) (\tilde{X},\tilde{d}) (X~,d~)是唯一的,称 ( X ~ , d ~ ) (\tilde{X},\tilde{d}) (X~,d~) ( X , d ) (X,d) (X,d)的完备化空间。
  23. 闭球套定理 X X X是一个完备的距离空间, B ‾ n = B ‾ ( x n , r n ) ( n = 1 , 2 , ⋯   ) \overline{B}_n=\overline{B}(x_n,r_n)(n=1,2,\cdots) Bn=B(xn,rn)(n=1,2,) X X X的一系列闭球套: B ˉ 1 ⊃ B ˉ 2 ⋯ ⊃ B ˉ n ⊃ ⋯   , \bar{B}_{1} \supset \bar{B}_{2} \cdots \supset \bar{B}_{n} \supset \cdots, Bˉ1Bˉ2Bˉn,,且 r n → 0 ( n → ∞ ) r_n\rightarrow 0(n\rightarrow \infty) rn0(n),则存在 X X X中唯一的一点 x ∈ ⋂ n = 1 ∞ B ˉ n x\in \bigcap_{n=1}^{\infty} \bar{B}_{n} xn=1Bˉn

  24. 压缩映射定理(Banach不动点定理):设 ( X , d ) (X,d) (X,d)是完备的距离空间, T : X → X T:X\rightarrow X T:XX,如果对于任意的 x , y ∈ X x,y\in X x,yX,不等式 d ( T x , T y ) ≤ θ d ( x , y ) d(Tx,Ty)\le\theta d(x,y) d(Tx,Ty)θd(x,y)成立,其中 0 < θ < 1 0<\theta<1 0<θ<1,则存在唯一的 x ‾ ∈ X \overline{x}\in X xX,使得 T x ‾ = X ‾ T\overline{x}=\overline{X} Tx=X.

    • ( X , d ) (X,d) (X,d)是完备的距离空间, T : X → X T:X\rightarrow X T:XX,如果存在正整数 n 0 n_0 n0,使得对所有的 x , y ∈ X x,y\in X x,yX,有 d ( T n 0 x , T n 0 y ) ≤ θ d ( x , y ) d(T^{n_0}x,T^{n_0}y)\le\theta d(x,y) d(Tn0x,Tn0y)θd(x,y)成立,其中 0 < θ < 1 0<\theta<1 0<θ<1,则存在唯一的 x ‾ ∈ X \overline{x}\in X xX,使得 T x ‾ = X ‾ T\overline{x}=\overline{X} Tx=X.
    • (Brouwer)设 B B B R n R^n Rn中的闭单位球,设 T : B → B T:B\rightarrow B T:BB是一个连续映射,则 T T T必有一个不动点 x ∈ B x\in B xB
    • (Schauder)设 C C C是线性赋范空间 X X X中的一个闭凸子集, T : C → C T:C\rightarrow C T:CC,连续且
      T ( C ) T(C) T(C)紧致,则 T T T C C C上必有一个不动点。

强调点到集合的思想:任意点成立,推广到集合的层面。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值