泛函分析笔记01:距离空间的基本概念

第一章:距离空间和拓扑空间

1.1 距离空间的基本概念

距离空间定义

定义1.1: 设 X ≠ ∅ X \not= \varnothing X= , 如果 d :   X × X → R d:\ X \times X \rightarrow \mathbb{R} d: X×XR 满足:

\quad (1).(非负性) d ( x , y ) ≥ 0 d(x,y)\geq 0 d(x,y)0;(分离性) d ( x , y ) = 0 ⇔ x = y d(x,y)=0 \Leftrightarrow x=y d(x,y)=0x=y

\quad (2).(对称性) d ( x , y ) = d ( y , x ) d(x,y)=d(y,x) d(x,y)=d(y,x)

\quad (3).(三角不等式) d ( x , y ) ≤ d ( x , z ) + d ( z , y ) d(x,y)\leq d(x,z)+d(z,y) d(x,y)d(x,z)+d(z,y)

则称 d d d X X X 上的一个距离。称 ( X , d ) (X ,d) (X,d)是距离空间。

注:“非负性”条件可去。

p r o o f : proof: proof 事实上, ∀ x , y ∈ X \forall x,y\in X x,yX,有
0 = d ( x , x ) ≤ d ( x , y ) + d ( y , x ) = 2 ⋅ d ( x , y ) 0=d(x,x)\leq d(x,y)+d(y,x)=2\cdot d(x,y) 0=d(x,x)d(x,y)+d(y,x)=2d(x,y)

定义1.2:如果 ( X , d ) (X,d) (X,d)是距离空间,且 X 0 ⊂ X X_0 \subset X X0X,则 d ∣ X 0 × X 0 d|_{X_0\times X_0} dX0×X0 X 0 X_0 X0上的距离,从而 ( X 0 , d ) (X_0,d) (X0,d)构成一个距离空间。此时,称 ( X 0 , d ) (X_0,d) (X0,d) ( X , d ) (X,d) (X,d)的子空间

举例

以下为距离空间的例子:

例 1:n维欧式空间 K n \mathbb{K}^n Kn(其中 K = R \mathbb{K}=\mathbb{R} K=R C \mathbb{C} C), ∀ x = ( x 1 , ⋯   , x n ) , y = ( y 1 , ⋯   , y n ) ∈ K n \forall x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)\in \mathbb{K}^n x=(x1,,xn),y=(y1,,yn)Kn

  • 定义 d ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ 2 ) 1 2 d(x,y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}} d(x,y)=(i=1nxiyi2)21,则 d d d K n \mathbb{K}^n Kn上的距离

  • 定义 d 1 ( x , y ) = ∑ i = 1 n ∣ x i − y i ∣ d_1(x,y)=\sum_{i=1}^n |x_i-y_i| d1(x,y)=i=1nxiyi,则 d 1 d_1 d1 K n \mathbb{K}^n Kn上的距离

  • 定义 d ∞ ( x , y ) = max ⁡ i ∣ x i − y i ∣ d_\infty(x,y)=\max_i |x_i-y_i| d(x,y)=maxixiyi,则 d ∞ d_\infty d K n \mathbb{K}^n Kn上的距离

  • 定义 d p ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p , 1 < p < + ∞ d_p(x,y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}},1<p<+\infty dp(x,y)=(i=1nxiyip)p1,1<p<+,则 d p d_p dp K n \mathbb{K}^n Kn上的距离 ( L p L_p Lp空间)

注:当 0 < p < 1 0<p<1 0<p<1时,可定义 d p ( x , y ) = ∑ i = 1 n ∣ x i − y i ∣ p d_p(x,y)=\sum_{i=1}^{n}|x_{i}-y_{i}|^p dp(x,y)=i=1nxiyip,此时 d p d_p dp K n \mathbb{K}^n Kn上的距离

例 2:离散距离空间,设 X ≠ ∅ X\not= \varnothing X=,定义 d ( x , y ) = I ( x ≠ y ) d(x,y)=\mathbb{I}(x\not= y) d(x,y)=I(x=y),则 d d d X X X上的距离

例 3:在 K \mathbb{K} K中,定义 d 1 = ∣ x − y ∣ 1 + ∣ x − y ∣ d_1=\frac{|x-y|}{1+|x-y|} d1=1+xyxy,则 d d d K \mathbb{K} K上的距离

例 4:记 s s s R \mathbb{R} R上数列的全体构成的集合, ∀ x = { x n } n = 1 ∞ , y = { y n } n = 1 ∞ ∈ s \forall x=\{x_n\}_{n=1}^\infty,y=\{y_n\}_{n=1}^\infty \in s x={xn}n=1,y={yn}n=1s,定义 d ( x , y ) = ∑ n = 1 ∞ 1 2 n ⋅ ∣ x n − y n ∣ 1 + ∣ x n − y n ∣ d(x,y)=\sum_{n=1}^\infty \frac{1}{2^n}\cdot \frac{|x_n-y_n|}{1+|x_n-y_n|} d(x,y)=n=12n11+xnynxnyn,则 d d d s s s上的距离

例 5:记 S [ a , b ] S[a,b] S[a,b] [ a , b ] [a,b] [a,b]上所有 a . e . a.e. a.e.有限可测函数的全体。设 x , y ∈ S [ a , b ] x,y\in S[a,b] x,yS[a,b],定义 d ( x , y ) = ∫ [ a , b ] ∣ x ( t ) − y ( t ) ∣ 1 + ∣ x ( t ) − y ( t ) ∣ d t d(x,y)=\int_{[a,b]}\frac{|x(t)-y(t)|}{1+|x(t)-y(t)|}dt d(x,y)=[a,b]1+x(t)y(t)x(t)y(t)dt,则 d d d S [ a , b ] S[a,b] S[a,b]上的距离

例 6:连续函数空间 C [ a , b ] C[a,b] C[a,b],定义 d ( f , g ) = s u p t ∈ [ a , b ] ∣ f ( t ) − g ( t ) ∣ d(f,g)=sup_{t\in [a,b]} |f(t)-g(t)| d(f,g)=supt[a,b]f(t)g(t),则 d d d是$C[a,b]上的距离

例 7:设 E ∈ R E\in \mathbb{R} ER中的Lebesgue可测集, L ′ ( E ) L'(E) L(E) E E E上所有Lebesgue可积函数全体构成的集合。定义 d ( f , g ) = ∫ E ∣ f ( t ) − g ( t ) ∣ d t d(f,g)=\int _E |f(t)-g(t)|dt d(f,g)=Ef(t)g(t)dt,则 d d d L ′ ( E ) L'(E) L(E)上的距离

例 8:设 l ∞ l^\infty l K \mathbb{K} K上有界数列的全体构成的集合, ∀ x = { x n } n = 1 ∞ , y = { y n } n = 1 ∞ ∈ l ∞ \forall x=\{x_n\}_{n=1}^\infty,y=\{y_n\}_{n=1}^\infty \in l^\infty x={xn}n=1,y={yn}n=1l,定义 d ( x , y ) = sup ⁡ n ∈ N ∣ x n − y n ∣ d(x,y)=\sup_{n\in \mathbb{N}}|x_n-y_n| d(x,y)=supnNxnyn,则 d d d l ∞ l^\infty l上的距离

收敛性

定义1.3:设 ( X , d ) (X,d) (X,d)是距离空间, { x n } n = 1 ∞ ⊂ X \{x_n\}_{n=1}^\infty\subset X {xn}n=1X,且 x 0 ∈ X x_0\in X x0X,如果 lim ⁡ n → ∞ d ( x n , x 0 ) = 0 \lim_{n\rightarrow \infty} d(x_n,x_0)=0 limnd(xn,x0)=0,则称 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty {xn}n=1收敛于 x 0 x_0 x0,记作 lim ⁡ n → ∞ x n = x 0 \lim_{n\rightarrow \infty}x_n=x_0 limnxn=x0 x n → x 0 x_n\rightarrow x_0 xnx0。若 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty {xn}n=1不收敛于 X X X中的任意点,则称 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty {xn}n=1发散。

性质1.4:

  • 收敛的极限是唯一的

  • 收敛点列的子列也收敛,且极限相等

  • d : X × X → R d:X\times X\rightarrow \mathbb{R} d:X×XR是二元连续函数

例 9:

  • 在欧式空间 K n \mathbb{K}^n Kn中,收敛等价于按坐标收敛
  • s s s中,收敛等价于按坐标收敛

连续性

定义1.5:设 ( X , d ) , ( X 1 , d 1 ) (X,d), (X_1,d_1) (X,d),(X1,d1)为距离空间, f : X → X 1 f:X\rightarrow X_1 f:XX1为一映射, x 0 ∈ X x_0\in X x0X,若对任意的 ϵ > 0 \epsilon>0 ϵ>0,存在 δ > 0 \delta >0 δ>0,当 d ( x , x 0 ) < δ d(x,x_0)<\delta d(x,x0)<δ时,有 d ( f ( x ) , f ( x 0 ) ) < ϵ d(f(x),f(x_0))<\epsilon d(f(x),f(x0))<ϵ,则称 f f f x 0 x_0 x0连续。如果 f f f X X X上的每个点都连续,则称 f f f X X X上连续。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值