diffusion model 简单demo

写在前面
强烈推荐这个:
https://huggingface.co/datasets/HuggingFace-CN-community diffusion 教程
扩散模型是如何工作的:从零开始的数学原理

以下内容参考自:

Probabilistic Diffusion Model概率扩散模型理论与完整PyTorch代码详细解读
知乎:diffusion model 最近在图像生成领域大红大紫,如何看待它的风头开始超过 GAN ?
diffusion 简单demo
扩散模型之DDPM
Diffusion model 原理剖析
张振虎-扩散概率模型
生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼

核心公式和逻辑

在这里插入图片描述
优化目标:
在这里插入图片描述
在这里插入图片描述
然后:
在这里插入图片描述
然后:
在这里插入图片描述
在这里插入图片描述

核心公式:

在这里插入图片描述

训练阶段

在这里插入图片描述
实际上是根据加噪后的图 和时间步 t 去预测噪声
在这里插入图片描述

q_x 计算公式,后面会用到:
在这里插入图片描述

推理

在这里插入图片描述

代码

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_s_curve, make_swiss_roll
from PIL import Image
import torch
import io

# get data
# s_curve, _ = make_s_curve(10**4 , noise=0.1)
# s_curve = s_curve[:, [0, 2]] / 10.0

swiss_roll, _ = make_swiss_roll(10**4,noise=0.1)
s_curve = swiss_roll[:, [0, 2]]/10.0

print('shape of moons: ', np.shape(s_curve))

data = s_curve.T
fix, ax = plt.subplots()
ax.scatter(*data, color='red', edgecolors='white', alpha=0.5)

ax.axis('off')

# plt.show()
plt.savefig('./s_curve.png')

dataset = torch.Tensor(s_curve).float()

# set params
num_steps = 100

betas = torch.linspace(-6, 6, num_steps)    # # 逐渐递增
betas = torch.sigmoid(betas) * (0.5e-2 - 1e-5) + 1e-5    # β0,β1,...,βt

print('beta: ', betas)

alphas = 1 - betas
alphas_pro = torch.cumprod(alphas, 0)   # αt^ = αt的累乘

# αt^往右平移一位, 原第t步的值维第t-1步的值, 第0步补1
alphas_pro_p = torch.cat([torch.tensor([1]).float(), alphas_pro[:-1]], 0)   # p表示previous, 即 αt-1^


alphas_bar_sqrt = torch.sqrt(alphas_pro)    # αt^ 开根号
one_minus_alphas_bar_log = torch.log(1 - alphas_pro)    # log (1 - αt^)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_pro)  # 根号下(1-αt^)

assert alphas.shape == alphas_pro.shape == alphas_pro_p.shape == alphas_bar_sqrt.shape == one_minus_alphas_bar_log.shape == one_minus_alphas_bar_sqrt.shape

print('beta: shape ', betas.shape)

# diffusion process

def q_x(x_0, t):
    ''' get q_x_{\t}
    作用: 可以基于x[0]得到任意时刻t的x[t]
    输入: x_0:初始干净图像; t:采样步
    输出: x_t:第t步时的x_0的样子
    '''
    noise = torch.randn_like(x_0) # 正态分布的随机噪声
    alphas_t = alphas_bar_sqrt[t]
    alphas_l_m_t = one_minus_alphas_bar_sqrt[t]

    return (alphas_t * x_0 + alphas_l_m_t * noise)


# test add noise
num_shows = 20
fig, axs = plt.subplots(2, 10, figsize=(28, 3))
plt.rc('text', color='blue')

# 测试一下加噪下过
## 共有10000个点,每个点包含两个坐标
## 生成100步以内,每个5步加噪后图像


for i in range(num_shows):
    j = i // 10
    k = i % 10
    q_i = q_x(dataset, torch.tensor(i * num_steps // num_shows))    # 生成t时刻的采样数据
    axs[j, k].scatter(q_i[:, 0], q_i[:, 1], color='red', edgecolor='white')
    axs[j, k].set_axis_off()
    axs[j, k].set_title('$q(\mathbf{x}_{' + str(i*num_steps // num_shows) + '})$')
    
# plt.show()
plt.savefig('diffusion_process.png')

# diffusion reverse process

# --------------------- diffusion model -----------------

import torch
import torch.nn as nn

class MLPDiffusion(nn.Module):
    def __init__(self, n_steps, num_units=32):
        super(MLPDiffusion, self).__init__()
        
        self.linears = nn.ModuleList(
            [
                nn.Linear(2, num_units),
                nn.ReLU(),
                nn.Linear(num_units, num_units),
                nn.ReLU(),
                nn.Linear(num_units, num_units),
                nn.ReLU(),
                nn.Linear(num_units, 2)
            ]
        )
        
        self.step_embeddings = nn.ModuleList(
            [nn.Embedding(n_steps, num_units),
             nn.Embedding(n_steps, num_units),
             nn.Embedding(n_steps, num_units),
             ]
        )

    def forward(self, x, t):
        """
        模型的输入是加噪后的图片x和加噪step-> t, 输出是噪声
        """
        for idx, embedding_layer in enumerate(self.step_embeddings):
            t_embedding = embedding_layer(t)
            x = self.linears[2 * idx](x)
            x += t_embedding
            x = self.linears[2 * idx + 1](x)

        x = self.linears[-1](x) # shape: [10000, 2]

        return x

# loss function
def diffusion_loss_fn(model, x_0, alphas_bar_sqrt, one_minus_alphas_bar_sqrt, n_steps, use_cuda=False):
    """
    作用: 对任意时刻t进行采样计算loss
    参数:
        model: 模型
        x_0: 干净的图
        alphas_bar_sqrt: 根号下αt^
        one_minus_alphas_bar_sqrt: 根号下(1-αt^)
        n_steps: 采样步
    """
    batch_size = x_0.shape[0]

    # 对一个batchsize样本生成随机的时刻t, 覆盖到更多不同的t
    t = torch.randint(0, n_steps, size=(batch_size//2,))  # 在0~99内生成整数采样步
    t = torch.cat([t, n_steps-1-t], dim=0)  # 一个batch的采样步, 尽量让生成的t不重复
    t = t.unsqueeze(-1)  # 扩展维度 -> [batchsize, 1]
    if use_cuda:
        t = t.cuda()

    # x0的系数
    a = alphas_bar_sqrt[t]  # 根号下αt^

    # eps的系数
    aml = one_minus_alphas_bar_sqrt[t]  # 根号下(1-αt^)

    # 生成随机噪音eps
    e = torch.randn_like(x_0)
    if use_cuda:
        e = e.cuda()

    # 构造模型的输入
    x = x_0 * a + e * aml  # 前向过程:根号下αt^ * x0 + 根号下(1-αt^) * eps

    # 送入模型,得到t时刻的随机噪声预测值
    output = model(x, t.squeeze(-1))  # 模型预测的是噪声, 噪声维度与x0一样大, [10000,2]

    # 与真实噪声一起计算误差,求平均值
    return (e - output).square().mean()



# --------------- reverse process ---------------
def p_sample_loop(model, shape, n_steps, betas, one_minus_alphas_bar_sqrt, use_cuda=False):
    """
    作用: 从x[T]恢复x[T-1]、x[T-2]、...x[0]
    输入:
        model:模型
        shape:数据大小,用于生成随机噪声
        n_steps:逆扩散总步长
        betas: βt
        one_minus_alphas_bar_sqrt: 根号下(1-αt^)
    输出:
        x_seq: 一个序列的x, 即 x[T]、x[T-1]、x[T-2]、...x[0]
    """
    if use_cuda:
        cur_x = torch.randn(shape).cuda()
    else:
        cur_x = torch.randn(shape)  # 随机噪声, 对应xt
    x_seq = [cur_x]
    for i in reversed(range(n_steps)):
        cur_x = p_sample(model, cur_x, i, betas, one_minus_alphas_bar_sqrt, use_cuda=use_cuda)
        x_seq.append(cur_x)

    return x_seq


def p_sample(model, x, t, betas, one_minus_alphas_bar_sqrt, use_cuda=False):
    """
    作用: 从x[T]采样t时刻的重构值
    输入:
        model:模型
        x: 采样的随机噪声x[T]
        t: 采样步
        betas: βt
        one_minus_alphas_bar_sqrt: 根号下(1-αt^)
    输出:
        sample: 样本
    """
    if use_cuda:
        t = torch.tensor([t]).cuda()
    else:
        t = torch.tensor([t])

    coeff = betas[t] / one_minus_alphas_bar_sqrt[t]  # 模型输出的系数:βt/根号下(1-αt^) = 1-αt/根号下(1-αt^)
    
    eps_theta = model(x, t)  # 模型的输出: εθ(xt, t)
        
    # (1/根号下αt) * (xt - (1-αt/根号下(1-αt^))*εθ(xt, t))
    mean = (1/(1-betas[t]).sqrt())*(x-(coeff*eps_theta))  
    if use_cuda:
        z = torch.randn_like(x).cuda()  # 对应公式中的 z
    else:
        z = torch.randn_like(x)  # 对应公式中的 z

    sigma_t = betas[t].sqrt()  # 对应公式中的 σt

    sample = mean + sigma_t * z

    return (sample)


# ----------- trainning ------------

print('Training model...')
if_use_cuda = True
batch_size = 1024
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, prefetch_factor=2)
num_epoch = 4000
plt.rc('text',color='blue')


model = MLPDiffusion(num_steps)  # 输出维度是2,输入是x和step
if if_use_cuda:
    model = model.cuda()

optimizer = torch.optim.Adam(model.parameters(), lr=2e-3)

iteration = 0
for t in range(num_epoch):
    for idx, batch_x in enumerate(dataloader):
        # 损失计算
        if if_use_cuda:
            loss = diffusion_loss_fn(model, batch_x.cuda(), alphas_bar_sqrt.cuda(), one_minus_alphas_bar_sqrt.cuda(), num_steps, use_cuda=if_use_cuda)
        else:
            loss = diffusion_loss_fn(model, batch_x, alphas_bar_sqrt, one_minus_alphas_bar_sqrt, num_steps)

        optimizer.zero_grad()  # 梯度清零
        loss.backward()  # 损失回传
        torch.nn.utils.clip_grad_norm_(model.parameters(),1.)  # 梯度裁剪
        optimizer.step()

        iteration += 1

        # if iteration % 100 == 0:
        if(t % 100 == 0):
            print(f'epoch: {t} , loss: ', loss.item())
            if if_use_cuda:
                x_seq = p_sample_loop(model, dataset.shape, num_steps, betas.cuda(), one_minus_alphas_bar_sqrt.cuda(), use_cuda=True)
            else:
                x_seq = p_sample_loop(model, dataset.shape, num_steps, betas, one_minus_alphas_bar_sqrt, if_use_cuda)

            fig, axs = plt.subplots(1, 10, figsize=(28,3))
            for i in range(1, 11):
                cur_x = x_seq[i*10].cpu().detach()
                axs[i-1].scatter(cur_x[:,0],cur_x[:,1],color='red',edgecolor='white');
                axs[i-1].set_axis_off();
                axs[i-1].set_title('$q(\mathbf{x}_{'+str(i*10)+'})$')

            plt.savefig('./diffusion_train_tmp.png')


### ----------------动画演示扩散过程和逆扩散过程-------------------------
# 前向过程
imgs = []
for i in range(100):
    plt.clf()
    q_i = q_x(dataset,torch.tensor([i]))
    plt.scatter(q_i[:,0],q_i[:,1],color='red',edgecolor='white',s=5);
    plt.axis('off');
    
    img_buf = io.BytesIO()
    plt.savefig(img_buf,format='png')
    img = Image.open(img_buf)
    imgs.append(img)

# 逆向过程
reverse = []
for i in range(100):
    plt.clf()
    cur_x = x_seq[i].cpu().detach()
    plt.scatter(cur_x[:,0],cur_x[:,1],color='red',edgecolor='white',s=5);
    plt.axis('off')

    img_buf = io.BytesIO()
    plt.savefig(img_buf,format='png')
    img = Image.open(img_buf)
    reverse.append(img)

print('save gif...')
imgs = imgs
imgs[0].save("diffusion_forward.gif", format='GIF', append_images=imgs, save_all=True, duration=100, loop=0)

imgs = reverse
imgs[0].save("diffusion_denoise.gif", format='GIF', append_images=imgs, save_all=True, duration=100, loop=0)

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Diffusion Model是一种用于文本生成图像的核心方法,它在当前的研究中非常受欢迎。有几个基于扩散模型的算法,如Stable Diffusion、Disco-Diffusion、Mid-Journey和DALL-E2等。\[1\] 如果要简单实现Diffusion Model,可以考虑以下步骤: 1. 定义一个潜在空间,通常是一个低维度的向量空间。 2. 初始化一个随机的潜在向量作为输入。 3. 使用扩散过程,在潜在空间中逐步更新潜在向量,使其逐渐接近目标图像。 4. 根据更新后的潜在向量生成图像。 5. 重复步骤3和4,直到生成的图像达到满意的质量。 这是一个简化的实现过程,实际上,Diffusion Model的具体实现可能会更加复杂,涉及到更多的技术细节和优化方法。\[2\]\[3\]但是通过这个简单的实现,你可以开始尝试使用Diffusion Model生成图像。 #### 引用[.reference_title] - *1* *2* [AI艺术的背后:详解文本生成图像模型【基于 Diffusion Model】](https://blog.csdn.net/qq_32275289/article/details/126951463)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Diffusion Model原理详解](https://blog.csdn.net/weixin_42620109/article/details/129156101)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值