系统 Ubuntu20.04 显卡 英伟达3060 12G
参考资料
B站视频 搭建舒适的Ubuntu使用环境系列——从零到一搭建深度学习生产环境(Pytorch、Tensorflow)并使用GPU版本
CSDN Ubuntu20.04下CUDA、cuDNN的详细安装与配置过程(图文)
一、确定版本信息
进入Pytorch官网,确认要安装的CUDA版本
确定使用CUDA11.6
那么对应的,显卡驱动应该为510
二、安装显卡驱动
打开 software&Updates—>addtional Drivers
选择510,并点击apply changes
三、安装CUDA
从NVIDIA官网CUDA下载地址下载CUDA11.6.0,选择runfile
wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run
sudo sh cuda_11.6.0_510.39.01_linux.run
接下来按照Ubuntu20.04下CUDA、cuDNN的详细安装与配置过程(图文)进行
不过,我的.bashrc添加的是
# cuda安装位置
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64
四、安装cuDNN
到cuDNN下载,注意和CUDA版本匹配,我下载的是Download cuDNN v8.7.0 (November 28th, 2022), for CUDA 11.x
下载deb安装即可
五、安装anaconda
到官网下载
找到下载后的文件,
在终端输入 sh 文件名 即可,注意不要加sudo,以我为例
sh Anaconda3-2022.10-Linux-x86_64.sh
然后继续进行,按照提示输入yes等,最后会问你要不要初始化,记得选yes(默认是no)
最后,到.bashrc添加
export PATH=$PATH:/home/yourname/anaconda3/bin
六、安装pytorch
按理说,首先要anaconda新建环境,但是我忘了。
我尝试过很多次通过conda安装,搞了一天都没成功。
所以最后选择在打开anaconda的情况下(终端命令行最前面是base)(此时pytorch是装到了anaconda文件夹里面,可通过 pip show torch确认),使用pip安装,一次成功
进入pytorch官网,选择第一步确定的配置,
然后把官方给出的命令复制到命令行直接执行即可。
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
最后,测试是否安装成功。
终端进入python,
import torch
torch.cuda.is_available()
torch.__version__
结果如下
应该是成功了。