A novel binary shape context for 3D local surface description
文章目录
参考资料popSLAM:
Binary Shape Context (BSC) descriptor
二进制上下文描述子
2 BSC for 3D local surface description
2.1 Binary shape context descriptor In
2.1.1. Adaptive-scale keypoint detection
遍历所有的点云,在每个点邻域r的球体内,计算协方差,并PCA分解之。当三个特征值两两间的比值比较大时,认为是特征点。
一句话:找那些分布崎岖的点。
2.1.2. Local reference frame construction
LRF的构建具有重要意义。
- 旋转不变性
- 二义性通过遍历计算来进行消除。
协方差矩阵的计算是通过特征点,取其邻域r内的点来计算
p p p:特征点
r ( s c a l e ) r^{(scale)} r(scale):以特征点为球心的搜索半径。由上一步确定。
N = q 0 , q 1 , . . . , q m N={q_0,q_1,...,q_m} N=q0,q1,...,qm:点集合,最前面的 q 0 q_0 q0就是特征点 p p p