8-电容参数解读与降额计算

1.电容参数汇总
电容参数里面关注比较多的是1,2,3,14.
2.等效特性图
引线电感:电容引脚及制造时产生
绝缘阻抗:移位电容有漏电流,所以我们等效认为有一个电阻
等效串联阻抗:当频率达到谐振点时,电容的最小阻抗
3.电容的用途分类
当用于不同用途时,关注的参数不一样
4.耐压
举例:
5.电解电容的大气压降与鼓包炸裂故障分析
当大气压较小时,电容由于esr的存在会发热,发热以内电容内部压强就会增大,电容有可能鼓包。这个时候就可以采用上图5条措施,并联分流指的是并联相同的电容以后,单个电容的纹波电流
就减小了,发热量也减小了。
6.温度系数
7.自谐振频率点
如上述图及推导公式可以知道,当信号频率低时,主要是容抗在起作用;当频率很高时,感抗起主要作用。只有在谐振点,电容电阻相互抵消,只有esr,此时阻抗降到最低,我们通常利用这个特性,、
选择合适的电容值做退耦滤波。
8.多个电容并联时电容值的选择
上方的图选用3个容值一样的电容,它的好处是三个电容谐振点一致,所以谐振点通过并联以后电阻更小了,所以电容发热量更低,同时这个频点的滤波效果很好。
下方的图选用3个容值不一样的电容(通常相差10倍),这个时候能在更宽的频率上起到滤波的效果,但是单点上效果没有多个相同电容并联的好。
数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吴的嵌入式笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值