【ICML2025】通过概念对齐与混淆感知校准边界处理视觉-语言模型中的伪标签不平衡问题

来源:专知
本文约1000字,建议阅读5分钟本文深入探讨伪标签不平衡现象,并识别出两大关键诱因:概念不匹配与 概念混淆。

图片

近年来,利用伪标签将视觉-语言模型(VLMs)适配至下游任务,逐渐引起了广泛关注。然而,VLMs 所生成的伪标签通常存在类别不平衡问题,进而导致模型性能下降。尽管现有方法已尝试采用多种策略缓解这一问题,但对其根本原因的研究仍显不足。为填补这一空白,本文深入探讨伪标签不平衡现象,并识别出两大关键诱因:概念不匹配与 概念混淆

为缓解这两个问题,我们提出了一个新颖的框架,结合了概念对齐机制混淆感知校准边界机制。该方法的核心在于增强表现较差的类别,并推动模型在各类别间实现更加平衡的预测,从而有效缓解伪标签的不平衡问题。

我们在六个基准数据集、三种学习范式上进行了大量实证实验,结果表明,所提方法在伪标签的准确性与平衡性方面均实现了显著提升,相较当前最先进方法取得了 6.29% 的相对性能提升
我们的代码已开源,详见:
https://anonymous.4open.science/r/CAP-C642/

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值