概率论 1.3 古典概型与几何概型

1.3.1 排列与组合

  1. 排列

从n个不同元素任取r(r<=n)个元素排成一列(考虑元素出现的先后次序),称此为一个排列,此种排列的总数为=n(n-1)....(n-r+1)=n!/(n-r)!,若r=n,则称为全排列,

2.重复排列

从n个不同元素中每次取出一个,放回后再取出;下一个,如此连续取,次所得的排列称为重复排列,此种重复排列数共有n^r个,这里 r允许大于么n

3.组合

从n个不同元素中任取r(r<几)个元素并成一组(不考虑元素出现的先后次序),称为一个组合,此种组合的总数为

Ch

n (n

- 1)... (n r+1)

r!

nl

Fr! (n = r)!

易知

A, =Cr!, C, =C

排列组合公式在古典概型的概率计算中经常使用。

1.3.2 古典概型

具有以下两个特点的试验称为古典概型:

(1)有限性:试验的样本空间只含有限个样本点;

(2) 等可能性:试验中每个基本事件发生的可能性相同

对于古典概型,若样本空间中共有n个样本点,事件A 包含人个样本点,则事件

A 的概率为

事件4 中所包含样本点的个数

P(A)

2中所有样本点的个数

容易验证,由上式确定的概率满足公理化定义

【例 1.77(随机取数问题)从1,2,…,10共10个数字中任取一个,取后放回,

先后取出 7个数字,试求下列各事件的概率:

(1) A

=“7 个数字全不相同”;

(2) B

一“不含10与 1”;

(3)C=“10恰好出现两次”。

解随机试验的样本空问共含有10? 个不同的样本点,则

(3)对于事件C,出现两次 10可以是7次中的任意两次,故有C号种选择,其他5

次中,每次只能取剩下9个数字中的任何一个,故

C3 • 9

p(C)

0.124003.

107

例 1.8】(摸球问题)袋中有a 个白球,6个红球,k个人依次在袋中取一个球,

考虑下列两种取球方式,求第i(i=1,2,

,k)个人取到白球的概率.(1)作放回

抽样(即前一人取一个球观察颜色后放回袋中,后一个人再取一球),(2,作不放回抽

样(即前一人取一个球观察颜色后不放回袋中,后

-个人再取一球)

解记B=“第ii=1,2,

,k)个人取到白球”

1)放回抽样的情况.

第1个人取到白球的概率为-

2+6•因为是放回抽样,所以第2人,第3人,

第k人取到白球的概率均为

a大6,

P(B)=

a th

(2)不放回抽样的情况.

<个人各取一球,每种取法是一个基本事件,k 个人各取一球共有(a+6(a+6

-1∞[6a+6=(一11=A4,种取法.

当事件 B 发生时,第之人取的应是白球,它可以是a 个白球中的任一个,有a种

取法,其余被取的 k一1个球可以是其余a十6一1个球中的任意k一1个,共有(a+6

=16a+6=②∞16a+6=①=[¢=①+1J>=A千6-1种取法,所以

P(B)

a A"-b-i

A +6

a(a+6-①(a+6=1=1∞(a+6-1

(a +6(a+6=1∞€(a+6一k千17

- (k -1) +1

士6

值得注意的是,P(B)与之无关,即k 个人取球,尽管取球的先后次序不同,每个

人取到白球的概率是一样的,大家机会均等;放回抽样与不放回抽样取到白球的概率

也是一样的

类似的问题如购买彩票等,无论先买后买,中奖的概率是一样的.

【例1.9】(分房问题)

有几个人,每个人都以同样的概率被分配在 N(n≤N)间

房中的每一问中,试求下列各事件的概率:

(① A

一“某指定九间房中各有一人”

(2)B一“恰有几间房,其中各有一人”;

到达,所以由等可能性知这是一个几何概型问题,

样本空间2=1(z,3):0≤z,3≤60)

事件 A=“甲乙能会面”={(z,>)E2:1z一31≤20),因此

pPeA)一 附面餐

< 602

- 402

602


2023/5/18 补充

1.3.3 几何概型

几何概型是概率论中的一种概率模型,用于描述与几何形状或空间相关的概率问题。它基于几何结构和空间分布的概念,通过几何形状的性质和关系来推导和计算概率。

几何概型通常涉及到在一个给定的几何空间中进行事件的概率计算。这个几何空间可以是一维、二维或更高维的。在几何概型中,我们关注的是事件和几何形状之间的关系,以及如何利用几何性质来计算概率。

以下是一些常见的几何概型示例:

1. 投针问题(Buffon's Needle Problem):该问题由法国数学家乔治·路易·布菲昂提出,涉及到一根长度为l的针在一条与地板垂直的平行线格子上投掷时,针与格子相交的概率。这个问题可以用几何概型和概率方法来求解,通过针的长度和格子间距的比例来计算交叉的概率。

2. 无缝拼接问题(Tiling Problem):该问题涉及到将一组特定形状的图块拼接在一起以覆盖一个特定的区域。几何概型可以用于计算不同形状的图块在拼接过程中出现的概率,以及不同拼接方式的概率分布。

3. 几何随机游走(Geometric Random Walk):这是一个在几何空间中的随机过程,涉及到一个点或粒子按照一定的规则在几何空间中移动。几何概型可以用于研究粒子在不同几何结构中的行为和分布,如一维线段、二维网格等。

在解决几何概型问题时,我们可以利用概率的基本原理、组合计数和几何性质等工具。几何概型不仅具有理论研究的价值,也有实际应用,例如在统计物理、随机几何模型和空间数据分析等领域。

需要注意的是,几何概型常常涉及到一些简化的假设和理想化条件,以便进行概率计算。实际问题中的复杂性可能需要更高级的技术和方法来处理。


【例 1.11】<蒲丰投针问题)

平面上面有间隔为d (d二0的等距平行线,向平

面任意投掷一枚长为((L<d)的针,求针与任一平行线相交的概率.

解以,表示针的中点与最近一条平行线的距离,又以9表示针与直线间的交

角,如图1.2 所示.易知样本空间 2满足

0≤¢

Fd

0

<0<%.

2

由这两式可以确定平面上的一个矩化口,口的面积y”

A二“针与平行线相交” 发生当且仅当0≤五≤元

因此

7

sinode

2

A 的面积

P(A)

一2的面积

2l

di

du

2

+47 (11477-15,5138)

-sing

o

图 1.2蒲丰投针问题

蒲丰投针试验的应用及意义:根据频率的稳定性,当投针试验次数n很大时,测

出针与平行线相交的次数m,则频率值〞

“即可作为PCA)的近似值代人上式,那么

m一dr

n

2nl

dm

利用上式可以计算圆周率元 的近似值.


2023/5/18 补充

我们能从中学到什么?

从蒲丰投针问题中,我们可以学到几个重要的数学和概率概念,以及它们在实际问题中的应用:

1. 概率和统计:蒲丰投针问题是一个经典的概率问题,它涉及到计算事件发生的概率。通过解决这个问题,我们可以深入了解概率计算的方法和概念,并且在实际应用中可以应用概率和统计的原理。

2. 几何概念和积分:蒲丰投针问题可以使用几何概念来描述和解决。我们可以将针和格子看作几何形状,通过计算形状的面积和相交的区域来求解概率。这涉及到几何概念、积分和面积的计算,展示了几何在概率问题中的应用。

3. 近似计算和实验:蒲丰投针问题可以用来估算圆周率π的值。通过大量的针投掷实验,我们可以统计相交的次数并利用概率计算的方法来估计π的近似值。这展示了近似计算和实验在数学和概率中的应用。

4. 数学建模:蒲丰投针问题是一个经典的数学建模问题。它可以帮助我们将现实世界中的问题抽象成数学模型,并通过数学方法来解决和分析。这强调了数学建模在解决实际问题中的重要性。

综上所述,蒲丰投针问题提供了一个有趣的概率问题,通过解决这个问题,我们可以学到概率和统计、几何概念和积分、近似计算和实验以及数学建模等方面的知识和技巧。这些概念和方法在数学、概率论和应用数学领域有广泛的应用,并且可以帮助我们理解和解决更复杂的实际问题。

【例1.12】 随机向边长为1的正方形内投点,试求点投在正方形的一条对角线

上的概率,如图1.3所示.

解样本空间 2=1(z,):0二z,y<1),事件 A=

“点投在正方形的对角线上”={(z,»):2三〉),因此

对角线的面积

O

P(A)

=

=0.

中方形的面积

1

说明:根据前面概率的性质 1,我们知道不可能事件

的概率为 0.本例表明,概率为。的事件未必是不可能事

件,可能发生.类似地,概率为1的事件也未必是必然

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值