Gauss-Newton algorithm

高斯-牛顿算法是一种常用于非线性最小二乘问题的数值优化方法,它通过迭代逐步逼近问题的最小值。该算法利用了泰勒展开式的线性近似,每次迭代更新参数向量,使得残差平方和最小化。高斯-牛顿算法适用于求解光度重建、计算机视觉、信号处理等领域的非线性问题。
摘要由CSDN通过智能技术生成


function [x,minf] = minGN(f,x0,var,eps)
format long;
if nargin == 3
    eps = 1.0e-6;
end
S = transpose(f)*f;
k = length(f);
n = length(x0);
x0 = transpose(x0);
tol = 1;
A = jacobian(f,var);

while tol>eps
    Fx = zeros(k,1);
    for i=1:k
        Fx(i,1) = Funval(f(i),var,x0);
    end
    Sx = Funval(S,var,x0);
    Ax = Funval(A,var,x0);
    gSx = transpose(Ax)*Fx;

    dx = -transpose(Ax)*Ax\gSx;
    x0 = x0 + dx;
    tol = norm(dx);
end
x = x0;
minf = Funval(S,var,x);
format short;



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值