大模型 | LightRAG架构的详细步骤(图基文本索引、双层检索范式、检索增强答案生成、增量知识库的快速适应)

现有的RAG系统存在显著的局限性,包括依赖于平面数据表示和缺乏足够的上下文感知能力,这可能导致答案碎片化,无法捕捉复杂的相互依赖关系

为了解决这些挑战,提出了LightRAG,它将图结构整合到文本索引和检索过程中。这一创新框架采用了双层检索系统,从低层次和高层次的知识发现中增强了全面信息检索。

提出的LightRAG框架的整体架构
在这里插入图片描述

此外,图结构与向量表示的整合便于高效检索相关实体及其关系,显著提高了响应时间,同时保持了上下文的相关性。这种能力通过增量更新算法进一步增强,确保新数据能够及时整合,使系统在快速变化的数据环境中保持有效和响应性。并且LightRAG已开源

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

一、LightRAG架构的详细步骤:

1、图基文本索引(Graph-Based Text Indexing)

  • 步骤1:实体和关系提取

使用大型语言模型(LLM)对文档进行分析,识别出文本中的实体(如人名、地点、组织等)和它们之间的关系(如“属于”、“位于”等)。

将文档分割成多个小块(chunks),以提高处理效率。

  • 步骤2:LLM Profiling生成键值对

对于每个识别出的实体和关系,使用LLM生成一个键值对(key-value pair),其中键(key)是一个或多个关键词,值(value)是与实体或关系相关的文本段落。

  • 步骤3:去重优化

通过去重(Deduplication)过程,合并来自不同文档块中的相同实体和关系,减少图操作的开销。

2、双层检索范式(Dual-Level Retrieval Paradigm)

  • 步骤4:生成查询关键词

对于给定的用户查询,提取局部(low-level)和全局(high-level)关键词。

  • 步骤5:关键词匹配

使用向量数据库匹配局部关键词与候选实体,以及全局关键词与全局关键词关联的关系。

  • 步骤6:整合高阶相关性

为了增强查询的相关性,LightRAG会收集检索到的图元素的邻接节点,这涉及到检索节点和边的一跳邻接节点。

3、检索增强答案生成

  • 步骤7:使用检索到的信息

利用检索到的信息(包括实体和关系的值),通过通用的LLM生成答案。

  • 步骤8:上下文整合与答案生成

将用户查询与多源文本合并,LLM生成符合查询意图的信息性答案。

4、增量知识库的快速适应

  • 步骤9:增量更新知识库

当有新文档加入时,使用与之前相同的图基索引步骤处理新文档,生成新的知识图谱数据。

将新知识图谱数据与原有知识图谱合并,实现新数据的无缝整合。

  • 步骤10:减少计算开销

避免重建整个索引图,减少计算开销,实现新数据的快速整合。

广泛的实验验证表明,与现有方法相比,LightRAG在多个关键维度上,包括全面性、多样性、知识赋能,都显示出了显著的改进。LightRAG效果优于GraphRAG、NaiveRAG、RQ-RAG 、HyDE。

在四个数据集和四个评估维度下,基线与LightRAG的胜率(%)对比

使用NaiveRAG作为参考,LightRAG的简化版本的性能

案例研究:LightRAG与基线方法GraphRAG之间的比较

LightRAG检索和生成过程。当提出查询“哪些指标对于评估电影推荐系统最有信息量?”时,大型语言模型(LLM)首先提取低级和高级关键词。这些关键词指导在生成的知识图谱上的双级检索过程,目标是相关实体和关系。检索到的信息被组织成三个组成部分:实体、关系和相应的文本块。这些结构化数据随后被输入到LLM中,使其能够生成对查询的全面回答。

https://github.com/HKUDS/LightRAG
https://arxiv.org/pdf/2410.05779
LIGHTRAG: SIMPLE AND FAST RETRIEVAL-AUGMENTED GENERATION

二、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### 关于 LightRag 部署指南与解决方案 LightRag 是一种用于优化和加速大型语言模型推理过程的技术框架。对于希望部署 LightRag 的开发者而言,理解其架构设计以及具体实施步骤至关重要。 #### 架构概述 在准备阶段,需确认目标环境满足最低硬件需求并安装必要的依赖库[^1]。通常建议采用虚拟环境来管理项目所需的Python包版本,以避免与其他项目的冲突。 #### 安装配置 通过官方提供的GitHub仓库可以获取最新的源码发布版。按照README文件中的指示完成初始化设置,这包括但不限于克隆存储库、创建conda或venv环境、pip install指定requirements.txt内的组件列表等操作。 #### 数据准备 为了使LightRag能够正常工作,还需要准备好相应的输入数据集。这些数据可能涉及预训练权重文件、微调使用的语料库以及其他辅助资源。确保所有路径都已正确配置,并且可以通过测试脚本验证加载无误。 #### 运行实例 启动服务前,请先仔细阅读文档中有关参数调整的部分。合理设定batch size、sequence length等超参有助于提升性能表现。之后便可通过命令行工具或者API接口提交预测请求给到已经部署完毕的服务端程序处理。 ```bash python serve.py --model_path ./models/your_model --port 8080 ``` #### 故障排查 遇到问题时可参照常见错误解答部分寻找解决办法;同时鼓励社区交流分享经验心得,共同促进技术进步与发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值