iSAM1论文推导学习--第二节QR部分

本文详细介绍了增量平滑和映射(iSAM)算法的第一版,即iSAM1,它将SLAM问题转化为非线性最小二乘问题并利用QR分解求解。通过线性化过程模型和测量模型,将非线性最小二乘问题转换为标准形式,然后应用QR分解来求解,从而避免了Cholesky分解的矩阵条件数问题。这种方法有效地解决了机器人轨迹和地图估计的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

iSAM1论文链接

一.基于QR分解的增量平滑优化

A.一个SLAM的概率图模型

        用下图的网络表示SLAM问题:

其中, x_{i}是机器人在时刻i的状态,l_{j}是地标j的位置,u_{i}是时刻i的控制输入,z_{k}是第k个地标测量。

        所有变量和测量值的联合概率由以下公式表示:

其中P_{(x0)}是初始状态上的先验值,P(x_{i}|x_{i-1},u_{i})是运动学模型,由控制输入ui参数化,P(z_{k}|x_{ik},l_{jk})是地标性测量模型。这里假设每个测量值z_{k}都有已知的对应关系(i_{k},j_{k})

        假设为高斯测量模型。则“过程模型”如下:

 该方程描述了测程传感器或扫描匹配的过程,其中w_{i}是正态分布的零均值过程噪声与协方差矩阵\Lambda _{i}

        而高斯测量模型如下:

 对机器人的地标传感器进行建模,其中v_{k}是正态分布的零均值测量噪声与协方差\Gamma _{k}

 B.把SLAM化为最小二乘问题

当执行平滑而不是滤波操作时,注意的是给定控制输入u和地标测量值z时,整个轨迹x和地标l的地图估计。轨迹和映射的映射估计X^{*}L^{*}是通过最小化来自(1)的联合概率的负对数得到的:

 结合过程和测量模型,则有以下非线性最小二乘问题:

 其中,这里使用符号||e||_{\Sigma }=e^{T}\Sigma ^{-1}e代替平方马氏距离与协方差矩阵Σ

这里附录回顾了如何将测量函数线性化,并将非线性最小二乘目标函数(5)的所有分量收集成一个一般的最小二乘公式,遵循。通过泰勒展开式将(5)中的测量函数线性化,假设要么有一个很好的线性化点可用,或者正在进行一个非线性优化方法的一次迭代。在以上任何一种情况下,(5)中过程模型的一阶线性化给出为:

 其中,F_{i}^{i-1}是过程模型f_{i(.)}在线性化点x_{i-1}^{0}处的雅可比矩阵,这里定义为:

 并且,a_{i}=x_{i}^{0}-f_{i}(x_{i-1}^{0},u_{i})是测程预测误差(注意这里的ui是给出的,因此是常数)。而方程(5)中测量模型的一阶线性化如下:

 这里,H_{k}^{ik}J_{k}^{jk}分别是测量函数h_{k(.)}关于在线性化点(x_{ik}^{0},l_{jk}^{0})上计算的x_{ik}l_{jk}变化的雅可比矩阵:

并且c_{k}=z_{k}-h_{k}(x_{ik}^{0},l_{jk}^{0}) 是测量预测误差。

分别使用线性化过程和测量模型(24)和(26),则非线性最小二乘问题(5)变成:

也就是说,这里得到了δθ中一个需要有效求解的线性最小二乘问题。为了避免以一种特殊的方式处理\delta x_{i},我们引入了矩阵G_{i}^{i}=-I_{d_{x}\times{d_{x} },

 通过简单地改变变量,可以去掉协方差矩阵\Lambda _{i}\Gamma _{k}。用\Lambda ^{-1/2}作为Λ的矩阵平方根,可以将马氏范数重写如下:

 也就是说,总是可以通过将每个项中的F_{i}^{i-1}G_{i}^{i}a_{i}预乘来从(29)中消除Λi,同样从测量项中消除\Gamma _{k}。对于标量测量,这仅仅意味着将每一项除以测量的标准差。下面假设已经这样做了,然后去掉马氏符号:

最后,将雅可比矩阵收集到一个大矩阵A,将向量a_{i}c_{k}收集到一个右侧向量b,得到以下标准最小二乘问题:

为了简单起见,iSAM在附录之外去掉了δ·符号,则上式变成:

 其中,向量θ∈R^{n}包含所有的姿态和地标变量,矩阵A∈R^{m\times n }是一个大但稀疏的测量雅可比矩阵,b∈R^{m}是右侧(RHS)向量。

通过将||A_{\theta }-b||^{2}导数设为0,将该稀疏最小二乘系统转化为普通的线性方程组,得到所谓的正规方程A^{T}A\theta =A^{T}b。该方程系统可以用A^{T}A的 Cholesky 分解来求解。

 C.用QR分解法求解

将标准QR矩阵分解应用于测量雅可比矩阵A来求解最小二乘问题(6)。与Cholesky分解相比,这避免了必须用矩阵条件数的相关平方来计算信息矩阵A^{T}A。测量值雅可比矩阵A的QR分解得到:

 其中,R∈R^{n\times n}为上三角平方根信息矩阵(注意,信息矩阵由R^{T}R=A^{T}A给出),Q∈R^{m\times m}为正交矩阵。我们将这个因子分解应用于最小二乘问题(6):

 其中,定义[d,e]^{T}=Q^{T}b与d∈R^{n}和e∈R^{m-n}.(8)当且仅当Rθ=d时成为最小,留下第二项||e||^{2}作为最小二乘问题的残差。因此,QR分解将最小二乘问题简化为具有单一唯一解\theta ^{*}的线性系统:

 求解这个方程组的大部分工作已经通过QR分解完成了,因为R是上三角的,所以可以使用简单的反替换。结果是基于所有测量条件的完整机器人轨迹和地图的最小二乘估计\theta ^{*}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值