IMU预积分--对状态变量雅可比推导

平移项对各状态变量雅可比

  • ∂ ( α k + 1 i ) ∂ α k i \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb \alpha^i_k} αki(αk+1i)

    f α , α ( α ^ k i + δ α k i ) = ( α ^ k i + δ α k i ) + β ^ k i Δ t + 1 2 γ ^ k i a ^ k b Δ t 2 = f α , α ( α ^ k i ) + δ α k i ∂ ( α k + 1 i ) ∂ α k i = lim ⁡ δ α k i → 0 f α , α ( α ^ k i + δ α k i ) − f α , α ( α ^ k i ) δ α k i = lim ⁡ δ α k i → 0 δ α k i δ α k i = I 3 × 3 \begin{split} \pmb f_{\alpha, \alpha} (\hat{\pmb \alpha}^i_k + \delta \pmb \alpha^i_k) &= (\hat{\pmb \alpha}^i_k + \delta \pmb \alpha^i_k) + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t^2 \\ &= \pmb f_{\alpha, \alpha} (\hat{\pmb \alpha}^i_k) + \delta \pmb \alpha^i_k\\ \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb \alpha^i_k} &= \lim_{\delta \pmb \alpha^i_k \rightarrow \pmb 0} \frac{\pmb f_{\alpha, \alpha} (\hat{\pmb \alpha}^i_k + \delta \pmb \alpha^i_k) - \pmb f_{\alpha, \alpha} (\hat{\pmb \alpha}^i_k)}{\delta \pmb \alpha^i_k} \\ &= \lim_{\delta \pmb \alpha^i_k \rightarrow \pmb 0} \frac{\delta \pmb \alpha^i_k}{\delta \pmb \alpha^i_k} \\ &= \pmb I_{3 \times 3} \end{split} fα,α(α^ki+δαki)αki(αk+1i)=(α^ki+δαki)+β^kiΔt+21γ^kia^kbΔt2=fα,α(α^ki)+δαki=δαki0limδαkifα,α(α^ki+δαki)fα,α(α^ki)=δαki0limδαkiδαki=I3×3

  • ∂ ( α k + 1 i ) ∂ θ k i \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb \theta^i_k} θki(αk+1i)

    f α , θ ( θ ^ k i + δ θ k i ) = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i e x p ( [ δ θ k i ] × ) a ^ k b Δ t 2 = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i ( I + [ δ θ k i ] × ) a ^ k b Δ t 2 = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i a ^ k b Δ t 2 + 1 2 γ ^ k i [ δ θ k i ] × a ^ k b Δ t 2 = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i a ^ k b Δ t 2 − 1 2 γ ^ k i [ a ^ k b Δ t 2 ] × δ θ k i = f α , θ ( θ ^ k i ) − 1 2 γ ^ k i [ a ^ k b Δ t 2 ] × δ θ k i ∂ ( α k + 1 i ) ∂ θ k i = lim ⁡ δ θ k i → 0 f α , θ ( θ ^ k i + δ θ k i ) − f α , θ ( θ ^ k i ) δ θ k i = − 1 2 γ ^ k i [ a ^ k b Δ t 2 ] × \begin{split} \pmb f_{\alpha,\theta}(\hat{\pmb \theta}^i_k + \delta \pmb \theta^i_k) &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k exp([\delta \pmb \theta^i_k]_\times) \hat{\pmb a}^b_k \Delta t^2 \\ &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k (\pmb I +[\delta \pmb \theta^i_k]_\times) \hat{\pmb a}^b_k \Delta t^2 \\ &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t^2 + \frac12 \hat{\pmb \gamma}^i_k [\delta \pmb \theta^i_k]_\times \hat{\pmb a}^b_k \Delta t^2 \\ &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t^2 - \frac12 \hat{\pmb \gamma}^i_k [\hat{\pmb a}^b_k \Delta t^2]_{\times} \delta \pmb \theta^i_k \\ &= \pmb f_{\alpha,\theta}(\hat{\pmb \theta}^i_k) - \frac12 \hat{\pmb \gamma}^i_k [\hat{\pmb a}^b_k \Delta t^2]_{\times} \delta \pmb \theta^i_k \\ \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb \theta^i_k} &= \lim_{\delta \pmb \theta^i_k \rightarrow \pmb 0} \frac{\pmb f_{\alpha,\theta}(\hat{\pmb \theta}^i_k + \delta \pmb \theta^i_k) - \pmb f_{\alpha,\theta}(\hat{\pmb \theta}^i_k )}{\delta \pmb \theta^i_k} \\ &= - \frac12 \hat{\pmb \gamma}^i_k [\hat{\pmb a}^b_k \Delta t^2]_{\times} \\ \end{split} fα,θ(θ^ki+δθki)θki(αk+1i)=α^ki+β^kiΔt+21γ^kiexp([δθki]×)a^kbΔt2=α^ki+β^kiΔt+21γ^ki(I+[δθki]×)a^kbΔt2=α^ki+β^kiΔt+21γ^kia^kbΔt2+21γ^ki[δθki]×a^kbΔt2=α^ki+β^kiΔt+21γ^kia^kbΔt221γ^ki[a^kbΔt2]×δθki=fα,θ(θ^ki)21γ^ki[a^kbΔt2]×δθki=δθki0limδθkifα,θ(θ^ki+δθki)fα,θ(θ^ki)=21γ^ki[a^kbΔt2]×

  • ∂ ( α k + 1 i ) ∂ β k i \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb \beta^i_k} βki(αk+1i)

    f α , β ( β ^ k i + δ β k i ) = α ^ k i + ( β ^ k i + δ β k i ) Δ t + 1 2 γ ^ k i a ^ k b Δ t 2 = f α , β ( β ^ k i ) + δ β k i Δ t ∂ ( α k + 1 i ) ∂ β k i = lim ⁡ δ β k i → 0 f α , β ( β ^ k i + δ β k i ) − f α , β ( β ^ k i ) δ β k i = I ⋅ Δ t \begin{split} \pmb f_{\alpha, \beta} (\hat{\pmb \beta}^i_k + \delta \pmb \beta^i_k) &= \hat{\pmb \alpha}^i_k + (\hat{\pmb \beta}^i_k + \delta \pmb \beta^i_k) \Delta t + \frac12 \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t^2 \\ &= \pmb f_{\alpha, \beta} (\hat{\pmb \beta}^i_k) + \delta \pmb \beta^i_k \Delta t \\ \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb \beta^i_k} &= \lim_{\delta \pmb \beta^i_k \rightarrow \pmb 0} \frac{\pmb f_{\alpha, \beta} (\hat{\pmb \beta}^i_k + \delta \pmb \beta^i_k) - \pmb f_{\alpha, \beta} (\hat{\pmb \beta}^i_k)}{\delta \pmb \beta^i_k} \\ &= \pmb I \cdot \Delta t \\ \end{split} fα,β(β^ki+δβki)βki(αk+1i)=α^ki+(β^ki+δβki)Δt+21γ^kia^kbΔt2=fα,β(β^ki)+δβkiΔt=δβki0limδβkifα,β(β^ki+δβki)fα,β(β^ki)=IΔt

  • ∂ ( α k + 1 i ) ∂ b k a \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb b^a_k} bka(αk+1i)

    a k b = 1 2 [ ( a ~ k b − ( b ^ k a + δ b k a ) ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − ( b ^ k a + δ b k a ) ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k a ) ] − 1 2 ( I + E x p ( ω ^ k b Δ t ) ) δ b k a = a ^ k b − 1 2 ( I + E x p ( ω ^ k b Δ t ) ) δ b k a f α , b a ( b ^ k a + δ b k a ) = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i ( a ^ k b − 1 2 ( I + E x p ( ω ^ k b Δ t ) ) δ b k a ) Δ t 2 = f α , b a ( b ^ k a ) − 1 4 γ ^ k i ( I + E x p ( ω ^ k b Δ t ) ) δ b a ^ k Δ t 2 ∂ ( α k + 1 i ) ∂ b k a = lim ⁡ δ b k a → 0 f α , b a ( b ^ k a + δ b k a ) − f α , b a ( b ^ k a ) δ b k a = − 1 4 γ ^ k i ( I + E x p ( ω ^ k b Δ t ) ) Δ t 2 = − 1 4 ( γ ^ k i + γ ^ k + 1 i ) Δ t 2 \begin{split} \pmb a^b_k &= \frac12 \left[ \left(\tilde{\pmb a}^b_k - ( \hat{\pmb b}_k^a + \delta \pmb b^a_k) \right) + Exp(\hat{\pmb \omega}^b_k \Delta t) \left(\tilde{\pmb a}^b_{k+1} - (\hat{\pmb b}^a_k + \delta \pmb b^a_k) \right) \right] \\ &=\frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t)( \tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] - \frac12 \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \pmb b^a_k \\ &= \hat{\pmb a}^b_k - \frac12 \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \pmb b^a_k \\ \pmb f_{\alpha,ba}(\hat{\pmb b}^a_k + \delta \pmb b^a_k) &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \left(\hat{\pmb a}^b_k - \frac12 \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \pmb b^a_k \right) \Delta t^2 \\ &= \pmb f_{\alpha,ba}(\hat{\pmb b}^a_k) - \frac14 \hat{\pmb \gamma}^i_k \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \hat{\pmb b^a}_k \Delta t^2 \\ \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb b^a_k} &= \lim_{\delta \pmb b^a_k \rightarrow \pmb 0} \frac{\pmb f_{\alpha,ba}(\hat{\pmb b}^a_k + \delta \pmb b^a_k) - \pmb f_{\alpha,ba}(\hat{\pmb b}^a_k)}{\delta \pmb b^a_k} \\ &= - \frac14 \hat{\pmb \gamma}^i_k \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \Delta t^2 \\ &= - \frac14 (\hat{\pmb \gamma}^i_k + \hat{\pmb \gamma}^i_{k+1}) \Delta t^2 \\ \end{split} akbfα,ba(b^ka+δbka)bka(αk+1i)=21[(a~kb(b^ka+δbka))+Exp(ω^kbΔt)(a~k+1b(b^ka+δbka))]=21[(a~kbb^ka)+Exp(ω^kbΔt)(a~k+1bb^ka)]21(I+Exp(ω^kbΔt))δbka=a^kb21(I+Exp(ω^kbΔt))δbka=α^ki+β^kiΔt+21γ^ki(a^kb21(I+Exp(ω^kbΔt))δbka)Δt2=fα,ba(b^ka)41γ^ki(I+Exp(ω^kbΔt))δba^kΔt2=δbka0limδbkafα,ba(b^ka+δbka)fα,ba(b^ka)=41γ^ki(I+Exp(ω^kbΔt))Δt2=41(γ^ki+γ^k+1i)Δt2

  • ∂ ( α k + 1 i ) ∂ b k g \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb b^g_k} bkg(αk+1i)

    ω k b = 1 2 [ ( ω ~ k b − b ^ k g − δ b k g ) + ( ω ~ k + 1 b − b ^ k g − δ b k g ) ] = ω ^ k b − δ b k g a k b = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ( ω ^ k b − δ b k g ) Δ t ) ( a ~ k + 1 b − b ^ k a ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) E x p ( − J r ( ω ^ k b Δ t ) ⏟ I δ b k g Δ t ) ( a ~ k + 1 b − b ^ k a ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( I − [ δ b k g Δ t ] × ) ( a ~ k + 1 b − b ^ k a ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k a ) ] − 1 2 E x p ( ω ^ k b Δ t ) [ δ b k g Δ t ] × ( a ~ k + 1 b − b ^ k a ) = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k a ) ] + 1 2 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t = a ^ k b + 1 2 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t \begin{split} \pmb \omega^b_k &= \frac12 [(\tilde{\pmb \omega}^b_k - \hat{\pmb b}_k^g - \delta \pmb b^g_k) + ( \tilde{\pmb \omega}^b_{k+1} - \hat{\pmb b}_k^g - \delta \pmb b^g_k) ] \\ &= \hat{\pmb \omega}^b_k - \delta \pmb b^g_k \\ \pmb a^b_k &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp((\hat{\pmb \omega}^b_k - \delta \pmb b^g_k) \Delta t)( \tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t) Exp(- \underbrace{\pmb J_r(\hat{\pmb \omega}^b_k \Delta t)}_{\pmb I} \delta \pmb b^g_k \Delta t) ( \tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t) ( \pmb I - [\delta \pmb b^g_k \Delta t]_{\times}) ( \tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t) (\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] - \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) [\delta \pmb b^g_k \Delta t]_{\times} (\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \\ &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t) (\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t \\ &= \hat{\pmb a}^b_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t \\ \end{split} ωkbakb=21[(ω~kbb^kgδbkg)+(ω~k+1bb^kgδbkg)]=ω^kbδbkg=21[(a~kbb^ka)+Exp((ω^kbδbkg)Δt)(a~k+1bb^ka)]=21 (a~kbb^ka)+Exp(ω^kbΔt)Exp(I Jr(ω^kbΔt)δbkgΔt)(a~k+1bb^ka) =21[(a~kbb^ka)+Exp(ω^kbΔt)(I[δbkgΔt]×)(a~k+1bb^ka)]=21[(a~kbb^ka)+Exp(ω^kbΔt)(a~k+1bb^ka)]21Exp(ω^kbΔt)[δbkgΔt]×(a~k+1bb^ka)=21[(a~kbb^ka)+Exp(ω^kbΔt)(a~k+1bb^ka)]+21Exp(ω^kbΔt)[a~k+1bb^ka]×δbkgΔt=a^kb+21Exp(ω^kbΔt)[a~k+1bb^ka]×δbkgΔt

    f α , b g ( b ^ k g + δ b k g ) = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i ( a ^ k b + 1 2 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t ) Δ t 2 = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i a ^ k b Δ t 2 + 1 4 γ k i E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t 3 = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i a ^ k b Δ t 2 + 1 4 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t 3 ∂ ( α k + 1 i ) ∂ b k g = lim ⁡ δ b k g → 0 f α , b g ( b ^ k g + δ b k g ) − f α , b g ( b ^ k g ) δ b k g = 1 4 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × Δ t 3 \begin{split} \pmb f_{\alpha, bg}(\hat{\pmb b}^g_k + \delta \pmb b^g_k) &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \left(\hat{\pmb a}^b_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t \right) \Delta t^2 \\ &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t^2 + \frac14 {\pmb \gamma}^i_k Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t^3 \\ &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t^2 + \frac14 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t^3 \\ \frac{\partial (\pmb \alpha^i_{k+1})}{\partial \pmb b^g_k} &= \lim_{\delta \pmb b^g_k \rightarrow \pmb 0} \frac{\pmb f_{\alpha, bg}(\hat{\pmb b}^g_k + \delta \pmb b^g_k) - \pmb f_{\alpha, bg}(\hat{\pmb b}^g_k) }{\delta \pmb b^g_k} \\ &= \frac14 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \Delta t^3 \end{split} fα,bg(b^kg+δbkg)bkg(αk+1i)=α^ki+β^kiΔt+21γ^ki(a^kb+21Exp(ω^kbΔt)[a~k+1bb^ka]×δbkgΔt)Δt2=α^ki+β^kiΔt+21γ^kia^kbΔt2+41γkiExp(ω^kbΔt)[a~k+1bb^ka]×δbkgΔt3=α^ki+β^kiΔt+21γ^kia^kbΔt2+41γ^k+1i[a~k+1bb^ka]×δbkgΔt3=δbkg0limδbkgfα,bg(b^kg+δbkg)fα,bg(b^kg)=41γ^k+1i[a~k+1bb^ka]×Δt3

角度项对各状态变量雅可比

γ ^ k + 1 i = γ ^ k i E x p ( ω ^ k b Δ t ) γ ^ k + 1 i ⊕ δ θ k + 1 i = ( γ ^ k i ⊕ δ θ k i ) E x p ( ω ^ k b Δ t ) \begin{split} \hat{\pmb \gamma}^i_{k+1} &= \hat{\pmb \gamma}^i_k Exp(\hat{\pmb \omega}^b_k \Delta t) \\ \hat{\pmb \gamma}^i_{k+1} \oplus \delta \pmb \theta^i_{k+1} &= (\hat{\pmb \gamma}^i_k \oplus \delta \pmb \theta^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t) \\ \end{split} γ^k+1iγ^k+1iδθk+1i=γ^kiExp(ω^kbΔt)=(γ^kiδθki)Exp(ω^kbΔt)

  • ∂ ( θ k + 1 i ) ∂ θ k i \frac{\partial (\pmb \theta^i_{k+1})}{\partial \pmb \theta^i_k} θki(θk+1i)

    ∂ ( θ k + 1 i ) ∂ θ k i = lim ⁡ δ θ k i → 0 E x p ( θ ^ k i ) E x p ( δ θ k i ) E x p ( ω ^ k b Δ t ) ⊖ E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) δ θ k i = lim ⁡ δ θ k i → 0 L o g ( E x p − 1 ( θ ^ k + 1 i ) E x p ( θ ^ k i ) E x p ( δ θ k i ) E x p ( ω ^ k b Δ t ) ) δ θ k i = lim ⁡ δ θ k i → 0 L o g ( E x p ( − ω ^ k b Δ t ) E x p ( δ θ k i ) E x p ( ω ^ k b Δ t ) ) δ θ k i = lim ⁡ δ θ k i → 0 L o g ( E x p ( E x p ( − ω ^ k b Δ t ) δ θ k i ) ) δ θ k i = lim ⁡ δ θ k i → 0 E x p ( − ω ^ k b Δ t ) δ θ k i δ θ k i = E x p ( − ω ^ k b Δ t ) = I − [ ω ^ k b Δ t ] × \begin{split} \frac{\partial (\pmb \theta^i_{k+1})}{\partial \pmb \theta^i_k} &= \lim_{\delta \pmb \theta^i_k \rightarrow \pmb 0} \frac{Exp(\hat{\pmb \theta}^i_{k}) Exp(\delta \pmb \theta^i_k) Exp(\hat{\pmb \omega}^b_k \Delta t) \ominus Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t)}{\delta \pmb \theta^i_k} \\ &= \lim_{\delta \pmb \theta^i_k \rightarrow \pmb 0} \frac{Log\left(Exp^{-1}(\hat{\pmb \theta}^i_{k+1})Exp(\hat{\pmb \theta}^i_{k}) Exp(\delta \pmb \theta^i_k) Exp(\hat{\pmb \omega}^b_k \Delta t) \right)}{\delta \pmb \theta^i_k} \\ &= \lim_{\delta \pmb \theta^i_k \rightarrow \pmb 0} \frac{Log\left( Exp(-\hat{\pmb \omega}^b_k \Delta t) Exp(\delta \pmb \theta^i_k) Exp(\hat{\pmb \omega}^b_k \Delta t) \right)}{\delta \pmb \theta^i_k} \\ &= \lim_{\delta \pmb \theta^i_k \rightarrow \pmb 0} \frac{Log\left( Exp( Exp(-\hat{\pmb \omega}^b_k \Delta t) \delta \pmb \theta^i_k) \right)}{\delta \pmb \theta^i_k} \\ &= \lim_{\delta \pmb \theta^i_k \rightarrow \pmb 0} \frac{Exp(-\hat{\pmb \omega}^b_k \Delta t) \delta \pmb \theta^i_k}{\delta \pmb \theta^i_k} \\ &= Exp(-\hat{\pmb \omega}^b_k \Delta t) \\ &= \pmb I - [\hat{\pmb \omega}^b_k \Delta t]_{\times} \end{split} θki(θk+1i)=δθki0limδθkiExp(θ^ki)Exp(δθki)Exp(ω^kbΔt)Exp(θ^ki)Exp(ω^kbΔt)=δθki0limδθkiLog(Exp1(θ^k+1i)Exp(θ^ki)Exp(δθki)Exp(ω^kbΔt))=δθki0limδθkiLog(Exp(ω^kbΔt)Exp(δθki)Exp(ω^kbΔt))=δθki0limδθkiLog(Exp(Exp(ω^kbΔt)δθki))=δθki0limδθkiExp(ω^kbΔt)δθki=Exp(ω^kbΔt)=I[ω^kbΔt]×

  • ∂ ( θ k + 1 i ) ∂ b k g \frac{\partial (\pmb \theta^i_{k+1})}{\partial \pmb b^g_k} bkg(θk+1i)

    ∂ ( θ k + 1 i ) ∂ b k g = lim ⁡ δ b k g → 0 E x p ( θ ^ k i ) E x p ( ( ω ^ k b − δ b k g ) Δ t ) ⊖ E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) δ b k g = lim ⁡ δ b k g → 0 E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) E x p ( − J r ( ω ^ k b Δ t ) δ b i g Δ t ) ⊖ E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) δ b k g = lim ⁡ δ b k g → 0 L o g ( E x p ( − δ b i g Δ t ) ) δ b k g = lim ⁡ δ b k g → 0 − δ b i g Δ t δ b k g = − I ⋅ Δ t \begin{split} \frac{\partial (\pmb \theta^i_{k+1})}{\partial \pmb b^g_k} &= \lim_{\delta \pmb b^g_k \rightarrow \pmb 0} \frac{Exp(\hat{\pmb \theta}^i_{k}) Exp\left((\hat{\pmb \omega}^b_k -\delta \pmb b^g_k) \Delta t\right) \ominus Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t)}{\delta \pmb b^g_k} \\ &= \lim_{\delta \pmb b^g_k \rightarrow \pmb 0} \frac{Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t) Exp \left(- \pmb J_r(\hat{\pmb \omega}^b_k \Delta t) \delta \pmb b^g_i \Delta t \right) \ominus Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t)}{\delta \pmb b^g_k} \\ &= \lim_{\delta \pmb b^g_k \rightarrow \pmb 0} \frac{Log \left(Exp (- \delta \pmb b^g_i \Delta t) \right)}{\delta \pmb b^g_k} \\ &= \lim_{\delta \pmb b^g_k \rightarrow \pmb 0} \frac{- \delta \pmb b^g_i \Delta t}{\delta \pmb b^g_k} \\ &= - \pmb I \cdot \Delta t \end{split} bkg(θk+1i)=δbkg0limδbkgExp(θ^ki)Exp((ω^kbδbkg)Δt)Exp(θ^ki)Exp(ω^kbΔt)=δbkg0limδbkgExp(θ^ki)Exp(ω^kbΔt)Exp(Jr(ω^kbΔt)δbigΔt)Exp(θ^ki)Exp(ω^kbΔt)=δbkg0limδbkgLog(Exp(δbigΔt))=δbkg0limδbkgδbigΔt=IΔt

速度项对各状态变量雅可比

β ^ k + 1 i = β ^ k i + γ ^ k i a ^ k b Δ t \begin{split} \hat{\pmb \beta}^i_{k+1} &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t \\ \end{split} β^k+1i=β^ki+γ^kia^kbΔt

  • ∂ ( β k + 1 i ) ∂ θ k i \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb \theta^i_k} θki(βk+1i)

    f β , θ ( θ ^ k i + δ θ k i ) = β ^ k i + γ ^ k i e x p ( [ δ θ k i ] × ) a ^ k b Δ t = β ^ k i + γ ^ k i ( I + [ δ θ k i ] × ) a ^ k b Δ t = f β , θ ( θ ^ k i ) + γ ^ k i [ δ θ k i ] × a ^ k b Δ t = f β , θ ( θ ^ k i ) − γ ^ k i [ a ^ k b Δ t ] × δ θ k i ∂ ( β k + 1 i ) ∂ θ k i = lim ⁡ δ θ k i → 0 f β , θ ( θ ^ k i + δ θ k i ) − f β , θ ( θ ^ k i ) δ θ k i = − γ ^ k i [ a ^ k b Δ t ] × \begin{split} \pmb f_{\beta,\theta}(\hat{\pmb \theta}^i_k + \delta \pmb \theta^i_k) &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k exp([\delta \pmb \theta^i_k]_\times) \hat{\pmb a}^b_k \Delta t \\ &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k(\pmb I + [\delta \pmb \theta^i_k]_\times)\hat{\pmb a}^b_k \Delta t \\ &= \pmb f_{\beta,\theta}(\hat{\pmb \theta}^i_k) + \hat{\pmb \gamma}^i_k [\delta \pmb \theta^i_k]_\times \hat{\pmb a}^b_k \Delta t \\ &= \pmb f_{\beta,\theta}(\hat{\pmb \theta}^i_k) - \hat{\pmb \gamma}^i_k [\hat{\pmb a}^b_k \Delta t]_\times \delta \pmb \theta^i_k \\ \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb \theta^i_k} &= \lim_{\delta \pmb \theta^i_k \rightarrow \pmb 0} \frac{\pmb f_{\beta,\theta}(\hat{\pmb \theta}^i_k + \delta \pmb \theta^i_k) - \pmb f_{\beta,\theta}(\hat{\pmb \theta}^i_k)}{\delta \pmb \theta^i_k} \\ &= - \hat{\pmb \gamma}^i_k [\hat{\pmb a}^b_k \Delta t]_\times \end{split} fβ,θ(θ^ki+δθki)θki(βk+1i)=β^ki+γ^kiexp([δθki]×)a^kbΔt=β^ki+γ^ki(I+[δθki]×)a^kbΔt=fβ,θ(θ^ki)+γ^ki[δθki]×a^kbΔt=fβ,θ(θ^ki)γ^ki[a^kbΔt]×δθki=δθki0limδθkifβ,θ(θ^ki+δθki)fβ,θ(θ^ki)=γ^ki[a^kbΔt]×

  • ∂ ( β k + 1 i ) ∂ β k i \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb \beta^i_k} βki(βk+1i)

    f β , β ( β ^ k i + δ β k i ) = β ^ k i + γ ^ k i a ^ k b Δ t + δ β k i = f β , β ( β ^ k i ) + δ β k i ∂ ( β k + 1 i ) ∂ β k i = lim ⁡ δ β k i → 0 f β , β ( β ^ k i + δ β k i ) − f β , β ( β ^ k i ) δ β k i = I \begin{split} \pmb f_{\beta,\beta}(\hat{\pmb \beta}^i_k+\delta \pmb \beta^i_k) &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t + \delta \pmb \beta^i_k \\ &= \pmb f_{\beta,\beta}(\hat{\pmb \beta}^i_k) + \delta \pmb \beta^i_k \\ \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb \beta^i_k} &= \lim_{\delta \pmb \beta^i_k \rightarrow \pmb 0}\frac{\pmb f_{\beta,\beta}(\hat{\pmb \beta}^i_k+\delta \pmb \beta^i_k) - \pmb f_{\beta,\beta}(\hat{\pmb \beta}^i_k)}{\delta \pmb \beta^i_k}\\ &= \pmb I \end{split} fβ,β(β^ki+δβki)βki(βk+1i)=β^ki+γ^kia^kbΔt+δβki=fβ,β(β^ki)+δβki=δβki0limδβkifβ,β(β^ki+δβki)fβ,β(β^ki)=I

  • ∂ ( β k + 1 i ) ∂ b k a \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb b^a_k} bka(βk+1i)

    a k b = 1 2 [ ( a ~ k b − ( b ^ k a + δ b k a ) ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − ( b ^ k a + δ b k a ) ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k a ) ] − 1 2 ( I + E x p ( ω ^ k b Δ t ) ) δ b k a = a ^ k b − 1 2 ( I + E x p ( ω ^ k b Δ t ) ) δ b k a f β , b a ( b ^ k a + δ b k a ) = β ^ k i + γ ^ k i ( a ^ k b − 1 2 ( I + E x p ( ω ^ k b Δ t ) ) δ b k a ) Δ t = f β , b a ( b ^ k a ) − 1 2 γ ^ k i ( I + E x p ( ω ^ k b Δ t ) ) δ b k a Δ t ∂ ( β k + 1 i ) ∂ b k a = lim ⁡ δ b k a → 0 f β , b a ( b ^ k a + δ b k a ) − f β , b a ( b ^ k a ) δ b k a = − 1 2 γ ^ k i ( I + E x p ( ω ^ k b Δ t ) ) Δ t = − 1 2 ( γ ^ k i + γ ^ k + 1 i ) Δ t \begin{split} \pmb a^b_k &= \frac12 \left[ \left(\tilde{\pmb a}^b_k - ( \hat{\pmb b}_k^a + \delta \pmb b^a_k) \right) + Exp(\hat{\pmb \omega}^b_k \Delta t) \left(\tilde{\pmb a}^b_{k+1} - (\hat{\pmb b}^a_k + \delta \pmb b^a_k) \right) \right] \\ &=\frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t)( \tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] - \frac12 \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \pmb b^a_k \\ &= \hat{\pmb a}^b_k - \frac12 \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \pmb b^a_k \\ \pmb f_{\beta,ba}(\hat{\pmb b}^a_k + \delta \pmb b^a_k) &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k \left( \hat{\pmb a}^b_k - \frac12 \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \pmb b^a_k \right) \Delta t \\ &= \pmb f_{\beta,ba}(\hat{\pmb b}^a_k) - \frac12 \hat{\pmb \gamma}^i_k \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \delta \pmb b^a_k \Delta t \\ \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb b^a_k} &= \lim_{\delta \pmb b^a_k \rightarrow \pmb 0} \frac{\pmb f_{\beta,ba}(\hat{\pmb b}^a_k + \delta \pmb b^a_k) - \pmb f_{\beta,ba}(\hat{\pmb b}^a_k)}{\delta \pmb b^a_k} \\ &= - \frac12 \hat{\pmb \gamma}^i_k \left(\pmb I + Exp(\hat{\pmb \omega}^b_k \Delta t) \right) \Delta t \\ &= - \frac12 (\hat{\pmb \gamma}^i_k + \hat{\pmb \gamma}^i_{k+1}) \Delta t \end{split} akbfβ,ba(b^ka+δbka)bka(βk+1i)=21[(a~kb(b^ka+δbka))+Exp(ω^kbΔt)(a~k+1b(b^ka+δbka))]=21[(a~kbb^ka)+Exp(ω^kbΔt)(a~k+1bb^ka)]21(I+Exp(ω^kbΔt))δbka=a^kb21(I+Exp(ω^kbΔt))δbka=β^ki+γ^ki(a^kb21(I+Exp(ω^kbΔt))δbka)Δt=fβ,ba(b^ka)21γ^ki(I+Exp(ω^kbΔt))δbkaΔt=δbka0limδbkafβ,ba(b^ka+δbka)fβ,ba(b^ka)=21γ^ki(I+Exp(ω^kbΔt))Δt=21(γ^ki+γ^k+1i)Δt

  • ∂ ( β k + 1 i ) ∂ b k g \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb b^g_k} bkg(βk+1i)

    ω k b = ω ^ k b − δ b k g a k b = a ^ k b + 1 2 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t f β , b g ( β ^ k i + δ β k i ) = β ^ k i + γ ^ k i ( a ^ k b + 1 2 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t ) Δ t = f β , b g ( β ^ k i ) + 1 2 γ ^ k i E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × δ b k g Δ t 2 ∂ ( β k + 1 i ) ∂ b k g = lim ⁡ δ b k g → 0 f β , b g ( β ^ k i + δ β k i ) − f β , b g ( β ^ k i ) δ b k g = 1 2 γ ^ k i E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × Δ t 2 = 1 2 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × Δ t 2 \begin{split} \pmb \omega^b_k &= \hat{\pmb \omega}^b_k - \delta \pmb b^g_k \\ \pmb a^b_k &= \hat{\pmb a}^b_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t \\ \pmb f_{\beta,bg}(\hat{\pmb \beta}^i_k + \delta \pmb \beta^i_k) &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k \left( \hat{\pmb a}^b_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t \right) \Delta t \\ &= \pmb f_{\beta,bg}(\hat{\pmb \beta}^i_k) + \frac12 \hat{\pmb \gamma}^i_k Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \delta \pmb b^g_k \Delta t^2 \\ \frac{\partial (\pmb \beta^i_{k+1})}{\partial \pmb b^g_k} &= \lim_{\delta \pmb b^g_k \rightarrow \pmb 0} \frac{\pmb f_{\beta,bg}(\hat{\pmb \beta}^i_k + \delta \pmb \beta^i_k) - \pmb f_{\beta,bg}(\hat{\pmb \beta}^i_k)}{\delta \pmb b^g_k} \\ &= \frac12 \hat{\pmb \gamma}^i_k Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \Delta t^2 \\ &= \frac12 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \Delta t^2 \end{split} ωkbakbfβ,bg(β^ki+δβki)bkg(βk+1i)=ω^kbδbkg=a^kb+21Exp(ω^kbΔt)[a~k+1bb^ka]×δbkgΔt=β^ki+γ^ki(a^kb+21Exp(ω^kbΔt)[a~k+1bb^ka]×δbkgΔt)Δt=fβ,bg(β^ki)+21γ^kiExp(ω^kbΔt)[a~k+1bb^ka]×δbkgΔt2=δbkg0limδbkgfβ,bg(β^ki+δβki)fβ,bg(β^ki)=21γ^kiExp(ω^kbΔt)[a~k+1bb^ka]×Δt2=21γ^k+1i[a~k+1bb^ka]×Δt2

偏置项对各状态变量雅可比

因为:
b ^ k + 1 a = b ^ k a b ^ k + 1 g = b ^ k g \begin{split} \hat{\pmb b}^a_{k+1} &= \hat{\pmb b}^a_k \\ \hat{\pmb b}^g_{k+1} &= \hat{\pmb b}^g_k \\ \end{split} b^k+1ab^k+1g=b^ka=b^kg
所以:
∂ ( b k + 1 a ) ∂ b k a = I ∂ ( b k + 1 g ) ∂ b k g = I \begin{split} \frac{\partial (\pmb b^a_{k+1})}{\partial \pmb b^a_k} &= \pmb I \\ \frac{\partial (\pmb b^g_{k+1})}{\partial \pmb b^g_k} &= \pmb I \\ \end{split} bka(bk+1a)bkg(bk+1g)=I=I

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值