IMU预积分--对噪声雅可比推导

平移项对噪声雅可比

ω ^ k b = 1 2 [ ( ω ~ k b − b ^ k g ) + ( ω ~ k + 1 b − b ^ k g ) ] a ^ k b = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k a ) ] E [ n ^ k a ] = 0 E [ n ^ k + 1 a ] = 0 E [ n ^ k g ] = 0 E [ n ^ k + 1 g ] = 0 \begin{split} \hat{\pmb \omega}^b_k &= \frac12 [(\tilde{\pmb \omega}^b_k - \hat{\pmb b}_k^g) + ( \tilde{\pmb \omega}^b_{k+1} - \hat{\pmb b}_k^g ) ] \\ \hat{\pmb a}^b_k & =\frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ E[\hat{\pmb n}^a_k] &= \pmb 0 \\ E[\hat{\pmb n}^a_{k+1}] &= \pmb 0 \\ E[\hat{\pmb n}^g_k] &= \pmb 0 \\ E[\hat{\pmb n}^g_{k+1}] &= \pmb 0 \\ \end{split} ω^kba^kbE[n^ka]E[n^k+1a]E[n^kg]E[n^k+1g]=21[(ω~kbb^kg)+(ω~k+1bb^kg)]=21[(a~kbb^ka)+Exp(ω^kbΔt)(a~k+1bb^ka)]=0=0=0=0

  • ∂ α k + 1 i ∂ δ n k a , ∂ α k + 1 i ∂ δ n k + 1 a \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^a_k}, \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^a_{k+1}} δnkaαk+1i,δnk+1aαk+1i

    a k b = 1 2 [ ( a ~ k b − b ^ k a + δ n k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k a + δ n k + 1 a ) ] = a ^ k b + 1 2 δ n k a + 1 2 E x p ( ω ^ k b Δ t ) δ n k + 1 a g α , n a ( δ n k a , δ n k + 1 a ) = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i [ a ^ k b + 1 2 δ n k a + 1 2 E x p ( ω ^ k b Δ t ) δ n k + 1 a ] Δ t 2 = g α , n a ( 0 , 0 ) + 1 4 γ ^ k i δ n k a Δ t 2 + 1 4 γ ^ k + 1 i δ n k + 1 a Δ t 2 \begin{split} {\pmb a}^b_k & =\frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a + \delta \pmb n^a_k) + Exp(\hat{\pmb \omega}^b_k \Delta t)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k + \delta\pmb n^a_{k+1}) \right] \\ &= \hat{\pmb a}^b_k + \frac12 \delta \pmb n^a_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) \delta\pmb n^a_{k+1} \\ \pmb g_{\alpha, na}(\delta \pmb n^a_k,\delta \pmb n^a_{k+1}) &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \left[\hat{\pmb a}^b_k + \frac12 \delta \pmb n^a_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) \delta\pmb n^a_{k+1} \right] \Delta t^2 \\ &= \pmb g_{\alpha, na}(\pmb 0,\pmb 0) + \frac14 \hat{\pmb \gamma}^i_k \delta \pmb n^a_k \Delta t^2 + \frac14 \hat{\pmb \gamma}^i_{k+1} \delta \pmb n^a_{k+1} \Delta t^2 \\ \end{split} akbgα,na(δnka,δnk+1a)=21[(a~kbb^ka+δnka)+Exp(ω^kbΔt)(a~k+1bb^ka+δnk+1a)]=a^kb+21δnka+21Exp(ω^kbΔt)δnk+1a=α^ki+β^kiΔt+21γ^ki[a^kb+21δnka+21Exp(ω^kbΔt)δnk+1a]Δt2=gα,na(0,0)+41γ^kiδnkaΔt2+41γ^k+1iδnk+1aΔt2

    ∂ α k + 1 i ∂ δ n k a = lim ⁡ δ n k a → 0 g α , n a ( δ n k a , 0 ) − g α , n a ( 0 , 0 ) δ n k a = 1 4 γ ^ k i Δ t 2 ∂ α k + 1 i ∂ δ n k + 1 a = lim ⁡ δ n k + 1 a → 0 g α , n a ( 0 , δ n k + 1 a ) − g α , n a ( 0 , 0 ) δ n k + 1 a = 1 4 γ ^ k + 1 i Δ t 2 \begin{split} \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^a_k} &= \lim_{\delta \pmb n^a_k \rightarrow \pmb 0} \frac{\pmb g_{\alpha, na}(\delta \pmb n^a_k, \pmb 0) - \pmb g_{\alpha, na}(\pmb 0,\pmb 0)}{\delta \pmb n^a_k} \\ &= \frac14 \hat{\pmb \gamma}^i_k \Delta t^2 \\ \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^a_{k+1}} &= \lim_{\delta \pmb n^a_{k+1} \rightarrow \pmb 0} \frac{\pmb g_{\alpha, na}(\pmb 0, \delta \pmb n^a_{k+1}) - \pmb g_{\alpha, na}(\pmb 0,\pmb 0)}{\delta \pmb n^a_{k+1}} \\ &= \frac14 \hat{\pmb \gamma}^i_{k+1} \Delta t^2 \\ \end{split} δnkaαk+1iδnk+1aαk+1i=δnka0limδnkagα,na(δnka,0)gα,na(0,0)=41γ^kiΔt2=δnk+1a0limδnk+1agα,na(0,δnk+1a)gα,na(0,0)=41γ^k+1iΔt2

  • ∂ α k + 1 i ∂ δ n k g , ∂ α k + 1 i ∂ δ n k + 1 g \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^g_k}, \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^g_{k+1}} δnkgαk+1i,δnk+1gαk+1i

    ω k b = 1 2 [ ( ω ~ k b − b ^ k g + δ n k g ) + ( ω ~ k + 1 b − b ^ k g + δ n k + 1 g ) ] = ω ^ k b + 1 2 δ n k g + 1 2 δ n k + 1 g a k b = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t + 1 2 δ n k g Δ t + 1 2 δ n k + 1 g Δ t ) ( a ~ k + 1 b − b ^ k a ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) E x p ( J r ( ω ^ k b Δ t ) ⏟ I ( 1 2 δ n k g Δ t + 1 2 δ n k + 1 g Δ t ) ) ( a ~ k + 1 b − b ^ k a ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) E x p ( 1 2 δ n k g Δ t + 1 2 δ n k + 1 g Δ t ) ( a ~ k + 1 b − b ^ k a ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( I + [ 1 2 δ n k g Δ t + 1 2 δ n k + 1 g Δ t ] × ) ( a ~ k + 1 b − b ^ k a ) ] = a ^ k b + 1 2 ( E x p ( ω ^ k b Δ t ) [ 1 2 δ n k g Δ t + 1 2 δ n k + 1 g Δ t ] × ( a ~ k + 1 b − b ^ k a ) ) = a ^ k b − 1 4 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × ( δ n k g Δ t + δ n k + 1 g Δ t ) g α , n g ( δ n k g , δ n k + 1 g ) = α ^ k i + β ^ k i Δ t + 1 2 γ ^ k i [ a ^ k b − 1 4 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × ( δ n k g Δ t + δ n k + 1 g Δ t ) ] Δ t 2 = g α , n g ( 0 , 0 ) − 1 8 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × ( δ n k g + δ n k + 1 g ) Δ t 3 \begin{split} {\pmb \omega}^b_k &= \frac12 [(\tilde{\pmb \omega}^b_k - \hat{\pmb b}_k^g + \delta \pmb n^g_k) + ( \tilde{\pmb \omega}^b_{k+1} - \hat{\pmb b}_k^g + \delta \pmb n^g_{k+1} ) ] \\ &= \hat{\pmb \omega}^b_k + \frac12 \delta \pmb n^g_k + \frac12 \delta \pmb n^g_{k+1} \\ {\pmb a}^b_k &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t + \frac12 \delta \pmb n^g_k \Delta t + \frac12 \delta \pmb n^g_{k+1} \Delta t)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t) Exp \left( \underbrace{\pmb J_r(\hat{\pmb \omega}^b_k \Delta t)}_{\pmb I} \left(\frac12 \delta \pmb n^g_k \Delta t + \frac12 \delta \pmb n^g_{k+1} \Delta t \right) \right)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t) Exp \left(\frac12 \delta \pmb n^g_k \Delta t + \frac12 \delta \pmb n^g_{k+1} \Delta t \right)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t) \left( \pmb I + \left[\frac12 \delta \pmb n^g_k \Delta t + \frac12 \delta \pmb n^g_{k+1} \Delta t \right]_{\times} \right)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ &= \hat{\pmb a}^b_k + \frac12 \left( Exp(\hat{\pmb \omega}^b_k \Delta t) \left[\frac12 \delta \pmb n^g_k \Delta t + \frac12 \delta \pmb n^g_{k+1} \Delta t \right]_{\times} (\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right) \\ &= \hat{\pmb a}^b_k - \frac14 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \left( \delta \pmb n^g_k \Delta t + \delta \pmb n^g_{k+1} \Delta t \right) \\ \pmb g_{\alpha,ng}(\delta \pmb n^g_k, \delta \pmb n^g_{k+1}) &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \left[ \hat{\pmb a}^b_k - \frac14 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \left( \delta \pmb n^g_k \Delta t + \delta \pmb n^g_{k+1} \Delta t \right) \right] \Delta t^2 \\ &= \pmb g_{\alpha,ng}(\pmb 0, \pmb 0) - \frac18 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} (\delta \pmb n^g_k + \delta \pmb n^g_{k+1}) \Delta t^3 \\ \end{split} ωkbakbgα,ng(δnkg,δnk+1g)=21[(ω~kbb^kg+δnkg)+(ω~k+1bb^kg+δnk+1g)]=ω^kb+21δnkg+21δnk+1g=21[(a~kbb^ka)+Exp(ω^kbΔt+21δnkgΔt+21δnk+1gΔt)(a~k+1bb^ka)]=21 (a~kbb^ka)+Exp(ω^kbΔt)Exp I Jr(ω^kbΔt)(21δnkgΔt+21δnk+1gΔt) (a~k+1bb^ka) =21[(a~kbb^ka)+Exp(ω^kbΔt)Exp(21δnkgΔt+21δnk+1gΔt)(a~k+1bb^ka)]=21[(a~kbb^ka)+Exp(ω^kbΔt)(I+[21δnkgΔt+21δnk+1gΔt]×)(a~k+1bb^ka)]=a^kb+21(Exp(ω^kbΔt)[21δnkgΔt+21δnk+1gΔt]×(a~k+1bb^ka))=a^kb41Exp(ω^kbΔt)[a~k+1bb^ka]×(δnkgΔt+δnk+1gΔt)=α^ki+β^kiΔt+21γ^ki[a^kb41Exp(ω^kbΔt)[a~k+1bb^ka]×(δnkgΔt+δnk+1gΔt)]Δt2=gα,ng(0,0)81γ^k+1i[a~k+1bb^ka]×(δnkg+δnk+1g)Δt3

    ∂ α k + 1 i ∂ δ n k g = lim ⁡ δ n k g → 0 g α , n g ( δ n k g , 0 ) − g α , n a ( 0 , 0 ) δ n k a = − 1 8 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × Δ t 3 ∂ α k + 1 i ∂ δ n k + 1 g = lim ⁡ δ n k + 1 g → 0 g α , n g ( 0 , δ n k + 1 g ) − g α , n g ( 0 , 0 ) δ n k + 1 g = − 1 8 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × Δ t 3 \begin{split} \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^g_k} &= \lim_{\delta \pmb n^g_k \rightarrow \pmb 0} \frac{\pmb g_{\alpha, ng}(\delta \pmb n^g_k, \pmb 0) - \pmb g_{\alpha, na}(\pmb 0,\pmb 0)}{\delta \pmb n^a_k} \\ &= - \frac18 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \Delta t^3 \\ \frac{\partial \pmb \alpha^i_{k+1}}{\partial \delta \pmb n^g_{k+1}} &= \lim_{\delta \pmb n^g_{k+1} \rightarrow \pmb 0} \frac{\pmb g_{\alpha, ng}(\pmb 0, \delta \pmb n^g_{k+1}) - \pmb g_{\alpha, ng}(\pmb 0,\pmb 0)}{\delta \pmb n^g_{k+1}} \\ &= - \frac18 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \Delta t^3 \\ \end{split} δnkgαk+1iδnk+1gαk+1i=δnkg0limδnkagα,ng(δnkg,0)gα,na(0,0)=81γ^k+1i[a~k+1bb^ka]×Δt3=δnk+1g0limδnk+1ggα,ng(0,δnk+1g)gα,ng(0,0)=81γ^k+1i[a~k+1bb^ka]×Δt3

角度项对噪声雅可比

ω ^ k b = 1 2 [ ( ω ~ k b − b ^ k g ) + ( ω ~ k + 1 b − b ^ k g ) ] γ ^ k + 1 i = γ ^ k i ⊗ [ 1 1 2 ω ^ k b Δ t ] o r E x p ( θ ^ k + 1 i ) = E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) \begin{split} \hat{\pmb \omega}^b_k &= \frac12 [(\tilde{\pmb \omega}^b_k - \hat{\pmb b}_k^g) + ( \tilde{\pmb \omega}^b_{k+1} - \hat{\pmb b}_k^g ) ] \\ \hat{\pmb \gamma}^i_{k+1} &= \hat{\pmb \gamma}^i_k \otimes \begin{bmatrix} 1 \\ \frac12 \hat{\pmb \omega}^b_k \Delta t \end{bmatrix} \\ or \\ Exp(\hat{\pmb \theta}^i_{k+1}) &= Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t) \\ \end{split} ω^kbγ^k+1iorExp(θ^k+1i)=21[(ω~kbb^kg)+(ω~k+1bb^kg)]=γ^ki[121ω^kbΔt]=Exp(θ^ki)Exp(ω^kbΔt)

ω k b = ω ^ k b + 1 2 δ n k g + 1 2 δ n k + 1 g ∂ θ k i δ n k g = lim ⁡ δ n k g → 0 E x p ( θ ^ k i ) E x p ( ( ω ^ k b + 1 2 δ n k g ) Δ t ) ⊖ E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) δ n k g = lim ⁡ δ n k g → 0 E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) E x p ( J r ( ω ^ k b Δ t ) 1 2 δ n k g Δ t ) ⊖ E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) δ n k g = lim ⁡ δ n k g → 0 E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) E x p ( 1 2 δ n k g Δ t ) ⊖ E x p ( θ ^ k i ) E x p ( ω ^ k b Δ t ) δ n k g = lim ⁡ δ n k g → 0 L o g ( E x p ( 1 2 δ n k g Δ t ) ) δ n k g = 1 2 I ⋅ Δ t ∂ θ k i δ n k g = 1 2 I ⋅ Δ t \begin{split} {\pmb \omega}^b_k &= \hat{\pmb \omega}^b_k + \frac12 \delta \pmb n^g_k + \frac12 \delta \pmb n^g_{k+1} \\ \frac{\partial \pmb \theta^i_k}{\delta \pmb n^g_k} &= \lim_{\delta \pmb n^g_k \rightarrow \pmb 0} \frac{Exp(\hat{\pmb \theta}^i_{k}) Exp \left((\hat{\pmb \omega}^b_k + \frac12 \delta \pmb n^g_k ) \Delta t \right) \ominus Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t)}{\delta \pmb n^g_k} \\ &= \lim_{\delta \pmb n^g_k \rightarrow \pmb 0} \frac{Exp(\hat{\pmb \theta}^i_{k}) Exp (\hat{\pmb \omega}^b_k \Delta t) Exp\left(\pmb J_r(\hat{\pmb \omega}^b_k \Delta t) \frac12 \delta \pmb n^g_k \Delta t \right) \ominus Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t)}{\delta \pmb n^g_k} \\ &= \lim_{\delta \pmb n^g_k \rightarrow \pmb 0} \frac{Exp(\hat{\pmb \theta}^i_{k}) Exp (\hat{\pmb \omega}^b_k \Delta t) Exp\left(\frac12 \delta \pmb n^g_k \Delta t \right) \ominus Exp(\hat{\pmb \theta}^i_{k}) Exp(\hat{\pmb \omega}^b_k \Delta t)}{\delta \pmb n^g_k} \\ &= \lim_{\delta \pmb n^g_k \rightarrow \pmb 0} \frac{Log(Exp\left(\frac12 \delta \pmb n^g_k \Delta t \right))}{\delta \pmb n^g_k} \\ &= \frac12 \pmb I \cdot \Delta t \\ \frac{\partial \pmb \theta^i_k}{\delta \pmb n^g_k} &= \frac12 \pmb I \cdot \Delta t \\ \end{split} ωkbδnkgθkiδnkgθki=ω^kb+21δnkg+21δnk+1g=δnkg0limδnkgExp(θ^ki)Exp((ω^kb+21δnkg)Δt)Exp(θ^ki)Exp(ω^kbΔt)=δnkg0limδnkgExp(θ^ki)Exp(ω^kbΔt)Exp(Jr(ω^kbΔt)21δnkgΔt)Exp(θ^ki)Exp(ω^kbΔt)=δnkg0limδnkgExp(θ^ki)Exp(ω^kbΔt)Exp(21δnkgΔt)Exp(θ^ki)Exp(ω^kbΔt)=δnkg0limδnkgLog(Exp(21δnkgΔt))=21IΔt=21IΔt

速度项对噪声雅可比

  • ∂ β k + 1 i ∂ δ n k a , ∂ β k + 1 i ∂ δ n k + 1 a \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^a_k}, \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^a_{k+1}} δnkaβk+1i,δnk+1aβk+1i

    a k b = a ^ k b + 1 2 δ n k a + 1 2 E x p ( ω ^ k b Δ t ) δ n k + 1 a g β , n a ( δ n k a , δ n k + 1 a ) = β ^ k i + γ ^ k i ( a ^ k b + 1 2 δ n k a + 1 2 E x p ( ω ^ k b Δ t ) δ n k + 1 a ) Δ t = g β , n a ( 0 , 0 ) + 1 2 γ ^ k i δ n k a Δ t + 1 2 γ ^ k + 1 i δ n k + 1 a Δ t \begin{split} {\pmb a}^b_k &= \hat{\pmb a}^b_k + \frac12 \delta \pmb n^a_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) \delta\pmb n^a_{k+1} \\ \pmb g_{\beta, na}(\delta \pmb n^a_k,\delta \pmb n^a_{k+1}) &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k \left( \hat{\pmb a}^b_k + \frac12 \delta \pmb n^a_k + \frac12 Exp(\hat{\pmb \omega}^b_k \Delta t) \delta\pmb n^a_{k+1} \right) \Delta t \\ &= \pmb g_{\beta, na}(\pmb 0,\pmb 0) + \frac12 \hat{\pmb \gamma}^i_k \delta \pmb n^a_k \Delta t + \frac12 \hat{\pmb \gamma}^i_{k+1} \delta \pmb n^a_{k+1} \Delta t \\ \end{split} akbgβ,na(δnka,δnk+1a)=a^kb+21δnka+21Exp(ω^kbΔt)δnk+1a=β^ki+γ^ki(a^kb+21δnka+21Exp(ω^kbΔt)δnk+1a)Δt=gβ,na(0,0)+21γ^kiδnkaΔt+21γ^k+1iδnk+1aΔt

    ∂ β k + 1 i ∂ δ n k a = 1 2 γ ^ k i Δ t ∂ β k + 1 i ∂ δ n k + 1 a = 1 2 γ ^ k + 1 i Δ t \begin{split} \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^a_k} &= \frac12 \hat{\pmb \gamma}^i_k \Delta t \\ \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^a_{k+1}} &=\frac12 \hat{\pmb \gamma}^i_{k+1} \Delta t \\ \end{split} δnkaβk+1iδnk+1aβk+1i=21γ^kiΔt=21γ^k+1iΔt

  • ∂ β k + 1 i ∂ δ n k g , ∂ β k + 1 i ∂ δ n k + 1 g \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^g_k}, \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^g_{k+1}} δnkgβk+1i,δnk+1gβk+1i

    ω k b = ω ^ k b + 1 2 δ n k g + 1 2 δ n k + 1 g a k b = a ^ k b − 1 4 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × ( δ n k g Δ t + δ n k + 1 g Δ t ) g β , n g ( δ n k g , δ n k + 1 g ) = β ^ k i + γ ^ k i ( a ^ k b − 1 4 E x p ( ω ^ k b Δ t ) [ a ~ k + 1 b − b ^ k a ] × ( δ n k g Δ t + δ n k + 1 g Δ t ) ) Δ t = g β , n g ( 0 , 0 ) − 1 4 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × ( δ n k g + δ n k + 1 g ) Δ t 2 \begin{split} {\pmb \omega}^b_k &= \hat{\pmb \omega}^b_k + \frac12 \delta \pmb n^g_k + \frac12 \delta \pmb n^g_{k+1} \\ {\pmb a}^b_k &= \hat{\pmb a}^b_k - \frac14 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \left( \delta \pmb n^g_k \Delta t + \delta \pmb n^g_{k+1} \Delta t \right) \\ \pmb g_{\beta,ng}(\delta \pmb n^g_k, \delta \pmb n^g_{k+1}) &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k \left( \hat{\pmb a}^b_k - \frac14 Exp(\hat{\pmb \omega}^b_k \Delta t) [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \left( \delta \pmb n^g_k \Delta t + \delta \pmb n^g_{k+1} \Delta t \right) \right) \Delta t \\ &= \pmb g_{\beta,ng}(\pmb 0, \pmb 0) - \frac14 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \left( \delta \pmb n^g_k + \delta \pmb n^g_{k+1} \right) \Delta t^2 \\ \end{split} ωkbakbgβ,ng(δnkg,δnk+1g)=ω^kb+21δnkg+21δnk+1g=a^kb41Exp(ω^kbΔt)[a~k+1bb^ka]×(δnkgΔt+δnk+1gΔt)=β^ki+γ^ki(a^kb41Exp(ω^kbΔt)[a~k+1bb^ka]×(δnkgΔt+δnk+1gΔt))Δt=gβ,ng(0,0)41γ^k+1i[a~k+1bb^ka]×(δnkg+δnk+1g)Δt2

    ∂ β k + 1 i ∂ δ n k g = − 1 4 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × Δ t 2 ∂ β k + 1 i ∂ δ n k + 1 g = − 1 4 γ ^ k + 1 i [ a ~ k + 1 b − b ^ k a ] × Δ t 2 \begin{split} \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^g_k} &= - \frac14 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \Delta t^2 \\ \frac{\partial \pmb \beta^i_{k+1}}{\partial \delta \pmb n^g_{k+1}} &= - \frac14 \hat{\pmb \gamma}^i_{k+1} [\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k]_{\times} \Delta t^2 \\ \end{split} δnkgβk+1iδnk+1gβk+1i=41γ^k+1i[a~k+1bb^ka]×Δt2=41γ^k+1i[a~k+1bb^ka]×Δt2

偏置项对噪声雅可比

b ^ k + 1 g = b ^ k g + n ^ k b g Δ t g b g , n b g ( δ n k b g ) = b ^ k g + n ^ k b g Δ t + δ n k b g Δ t = g b g , n b g ( 0 ) + n ^ k b g Δ t b ^ k + 1 a = b ^ k a + n ^ k b a Δ t g b a , n b a ( δ n k b a ) = b ^ k a + n ^ k b a Δ t + δ n k b a Δ t = g b a , n b a ( 0 ) + n ^ k b a Δ t \begin{split} \hat{\pmb b}^g_{k+1} &= \hat{\pmb b}^g_k + \hat{\pmb n}^{bg}_k \Delta t \\ \pmb g_{bg,nbg}(\delta \pmb n^{bg}_k) &= \hat{\pmb b}^g_k + \hat{\pmb n}^{bg}_k \Delta t + \delta \pmb n^{bg}_k \Delta t\\ &=\pmb g_{bg,nbg}(\pmb 0) + \hat{\pmb n}^{bg}_k \Delta t \\ \hat{\pmb b}^a_{k+1} &= \hat{\pmb b}^a_k + \hat{\pmb n}^{ba}_k \Delta t \\ \pmb g_{ba,nba}(\delta \pmb n^{ba}_k) &= \hat{\pmb b}^a_k + \hat{\pmb n}^{ba}_k \Delta t + \delta \pmb n^{ba}_k \Delta t\\ &=\pmb g_{ba,nba}(\pmb 0) + \hat{\pmb n}^{ba}_k \Delta t \\ \end{split} b^k+1ggbg,nbg(δnkbg)b^k+1agba,nba(δnkba)=b^kg+n^kbgΔt=b^kg+n^kbgΔt+δnkbgΔt=gbg,nbg(0)+n^kbgΔt=b^ka+n^kbaΔt=b^ka+n^kbaΔt+δnkbaΔt=gba,nba(0)+n^kbaΔt

所以:
∂ n k + 1 b g ∂ n k b g = lim ⁡ δ n k b g → 0 g b g , n b g ( δ n k b g ) − g b g , n b g ( 0 ) δ n k b g = I ⋅ Δ t ∂ n k + 1 b a ∂ n k b a = lim ⁡ δ n k b a → 0 g b a , n b a ( δ n k b a ) − g b a , n b a ( 0 ) δ n k b a = I ⋅ Δ t \begin{split} \frac{\partial\pmb n^{bg}_{k+1}}{\partial\pmb n^{bg}_k} &= \lim_{\delta \pmb n^{bg}_k \rightarrow \pmb 0} \frac{\pmb g_{bg,nbg}(\delta \pmb n^{bg}_k) - \pmb g_{bg,nbg}(\pmb 0)}{\delta \pmb n^{bg}_k} \\ &= \pmb I \cdot \Delta t \\ \frac{\partial\pmb n^{ba}_{k+1}}{\partial\pmb n^{ba}_k} &= \lim_{\delta \pmb n^{ba}_k \rightarrow \pmb 0} \frac{\pmb g_{ba,nba}(\delta \pmb n^{ba}_k) - \pmb g_{ba,nba}(\pmb 0)}{\delta \pmb n^{ba}_k} \\ &= \pmb I \cdot \Delta t \\ \end{split} nkbgnk+1bgnkbank+1ba=δnkbg0limδnkbggbg,nbg(δnkbg)gbg,nbg(0)=IΔt=δnkba0limδnkbagba,nba(δnkba)gba,nba(0)=IΔt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值