多元高斯分布
p
(
x
)
=
1
(
2
π
)
n
∣
Σ
∣
e
x
p
(
−
1
2
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
=
1
Z
e
x
p
(
−
1
2
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
∝
e
x
p
(
−
1
2
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
)
=
e
x
p
(
−
1
2
(
x
T
Σ
−
1
x
−
2
μ
T
Σ
−
1
x
+
μ
T
Σ
−
1
μ
)
)
∝
e
x
p
(
−
1
2
x
T
Σ
−
1
x
+
μ
T
Σ
−
1
x
)
=
e
x
p
(
−
1
2
x
T
Λ
x
+
η
T
x
)
∝
N
−
1
(
η
,
Λ
)
∝
N
(
μ
,
Σ
)
\begin{split} p(\pmb x) &= \frac{1}{\sqrt{(2\pi)^n| {\pmb \Sigma} |}}exp(-\frac12{({\pmb x}-{\pmb \mu})^T{\pmb \Sigma^{-1}}({\pmb x}-{\pmb \mu})} \\ &= \frac1Z exp(-\frac12{({\pmb x}-{\pmb \mu})^T{\pmb \Sigma^{-1}}({\pmb x}-{\pmb \mu})} \\ & \propto exp(-\frac12 ({\pmb x}-{\pmb \mu})^T{\pmb \Sigma^{-1}}({\pmb x}-{\pmb \mu}) ) \\ & = exp(-\frac12 ({\pmb x}^T\pmb\Sigma^{-1}{\pmb x} - 2{\pmb \mu}^T\pmb\Sigma^{-1}{\pmb x} + {\pmb \mu}^T\pmb \Sigma^{-1}{\pmb \mu} )) \\ & \propto exp(-\frac12 {\pmb x}^T \pmb\Sigma^{-1}{\pmb x} + {\pmb \mu}^T\pmb\Sigma^{-1}{\pmb x}) \\ &= exp(-\frac12 {\pmb x}^T\pmb\Lambda{\pmb x} + {\pmb \eta}^T{\pmb x}) \\ & \propto \mathcal{N}^{-1}({\pmb \eta},\pmb\Lambda) \\ & \propto \mathcal{N}({\pmb \mu},\pmb\Sigma) \end{split}
p(x)=(2π)n∣Σ∣1exp(−21(x−μ)TΣ−1(x−μ)=Z1exp(−21(x−μ)TΣ−1(x−μ)∝exp(−21(x−μ)TΣ−1(x−μ))=exp(−21(xTΣ−1x−2μTΣ−1x+μTΣ−1μ))∝exp(−21xTΣ−1x+μTΣ−1x)=exp(−21xTΛx+ηTx)∝N−1(η,Λ)∝N(μ,Σ)
其中:
η
=
Σ
−
1
μ
Λ
=
Σ
−
1
\begin{split} {\pmb \eta} &= {\pmb \Sigma}^{-1} {\pmb \mu} \\ \pmb\Lambda &= {\pmb \Sigma}^{-1} \end{split}
ηΛ=Σ−1μ=Σ−1
边际概率与条件概率
协方差矩阵表达
将
x
\pmb x
x拆分
p
(
x
)
=
p
(
[
x
a
x
b
]
)
∝
e
x
p
(
−
1
2
[
x
a
−
μ
a
x
b
−
μ
b
]
T
[
Σ
a
a
Σ
a
b
Σ
b
a
Σ
b
b
]
−
1
[
x
a
−
μ
a
x
b
−
μ
b
]
)
=
e
x
p
(
−
1
2
[
x
a
−
μ
a
x
b
−
μ
b
]
T
[
I
−
Σ
a
a
−
1
Σ
a
b
0
I
]
[
Σ
a
a
−
1
0
0
Δ
a
a
−
1
]
[
I
0
−
Σ
b
a
Σ
a
a
−
1
I
]
[
x
a
−
μ
a
x
b
−
μ
b
]
)
=
e
x
p
(
−
1
2
[
a
b
]
T
[
I
−
Σ
a
a
−
1
Σ
a
b
0
I
]
[
Σ
a
a
−
1
0
0
Δ
a
a
−
1
]
[
I
0
−
Σ
b
a
Σ
a
a
−
1
I
]
[
a
b
]
)
=
e
x
p
(
−
1
2
[
a
T
b
T
−
a
T
Σ
a
a
−
1
Σ
a
b
]
[
Σ
a
a
−
1
0
0
Δ
a
a
−
1
]
[
a
b
−
Σ
b
a
Σ
a
a
−
1
a
]
)
=
e
x
p
(
−
1
2
[
a
T
Σ
a
a
−
1
a
+
(
b
−
Σ
b
a
Σ
a
a
−
1
a
)
T
Δ
a
a
−
1
(
b
−
Σ
b
a
Σ
a
a
−
1
a
)
]
=
e
x
p
(
−
1
2
a
T
Σ
a
a
−
1
a
)
⏟
p
(
a
)
∗
e
x
p
(
−
1
2
(
b
−
Σ
b
a
Σ
a
a
−
1
a
)
T
Δ
a
a
−
1
(
b
−
Σ
b
a
Σ
a
a
−
1
a
)
)
⏟
p
(
b
∣
a
)
\begin{split} p(\pmb x) &= p(\begin{bmatrix}\pmb x_a \\ \pmb x_b \end{bmatrix}) \\ &\propto exp(-\frac12 \begin{bmatrix} \pmb x_a - \pmb \mu_a \\ \pmb x_b - \pmb \mu_b \end{bmatrix}^T \begin{bmatrix} \pmb \Sigma_{aa} & \pmb \Sigma_{ab} \\ \pmb \Sigma_{ba} & \pmb \Sigma_{bb} \end{bmatrix}^{-1} \begin{bmatrix} \pmb x_a - \pmb \mu_a \\ \pmb x_b - \pmb \mu_b \end{bmatrix}) \\ &= exp(-\frac12 \begin{bmatrix} \pmb x_a - \pmb \mu_a \\ \pmb x_b - \pmb \mu_b \end{bmatrix}^T \begin{bmatrix} \pmb I & -\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab} \\ \pmb 0 & \pmb I \end{bmatrix} \begin{bmatrix} \pmb \Sigma_{aa}^{-1} & \pmb 0 \\ \pmb 0 & \pmb \Delta_{aa}^{-1} \end{bmatrix} \begin{bmatrix} \pmb I & \pmb 0 \\ -\pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} & \pmb I \end{bmatrix} \begin{bmatrix} \pmb x_a - \pmb \mu_a \\ \pmb x_b - \pmb \mu_b \end{bmatrix}) \\ &= exp(-\frac12 \begin{bmatrix} \pmb a \\ \pmb b \end{bmatrix}^T \begin{bmatrix} \pmb I & -\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab} \\ \pmb 0 & \pmb I \end{bmatrix} \begin{bmatrix} \pmb \Sigma_{aa}^{-1} & \pmb 0 \\ \pmb 0 & \pmb \Delta_{aa}^{-1} \end{bmatrix} \begin{bmatrix} \pmb I & \pmb 0 \\ -\pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} & \pmb I \end{bmatrix} \begin{bmatrix} \pmb a \\ \pmb b \end{bmatrix}) \\ &= exp(-\frac12 \begin{bmatrix} \pmb a^{T} &\pmb b^{T} - \pmb a^{T}\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab} \end{bmatrix} \begin{bmatrix} \pmb \Sigma_{aa}^{-1} & \pmb 0 \\ \pmb 0 & \pmb \Delta_{aa}^{-1} \end{bmatrix} \begin{bmatrix} \pmb a \\ \pmb b -\pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} \pmb a \end{bmatrix}) \\ &= exp(-\frac12 [\pmb a^T \pmb \Sigma_{aa}^{-1} \pmb a + (\pmb b-\pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1}\pmb a)^T \pmb \Delta_{aa}^{-1}(\pmb b-\pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} \pmb a)] \\ &= \underbrace {exp(-\frac12 \pmb a^T \pmb \Sigma_{aa}^{-1} \pmb a)}_{p(\pmb a)} * \underbrace {exp(-\frac12 (\pmb b-\pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1}\pmb a)^T \pmb \Delta_{aa}^{-1}(\pmb b-\pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} \pmb a ))}_{p(\pmb b | \pmb a )} \end{split}
p(x)=p([xaxb])∝exp(−21[xa−μaxb−μb]T[ΣaaΣbaΣabΣbb]−1[xa−μaxb−μb])=exp(−21[xa−μaxb−μb]T[I0−Σaa−1ΣabI][Σaa−100Δaa−1][I−ΣbaΣaa−10I][xa−μaxb−μb])=exp(−21[ab]T[I0−Σaa−1ΣabI][Σaa−100Δaa−1][I−ΣbaΣaa−10I][ab])=exp(−21[aTbT−aTΣaa−1Σab][Σaa−100Δaa−1][ab−ΣbaΣaa−1a])=exp(−21[aTΣaa−1a+(b−ΣbaΣaa−1a)TΔaa−1(b−ΣbaΣaa−1a)]=p(a)
exp(−21aTΣaa−1a)∗p(b∣a)
exp(−21(b−ΣbaΣaa−1a)TΔaa−1(b−ΣbaΣaa−1a))
其中:
a
=
x
a
−
μ
a
b
=
x
b
−
μ
b
b
−
Σ
b
a
Σ
a
a
−
1
a
=
x
b
−
(
μ
b
+
Σ
b
a
Σ
a
a
−
1
(
x
a
−
μ
a
)
)
Δ
a
a
=
Σ
b
b
−
Σ
b
a
Σ
a
a
−
1
Σ
a
b
\begin{split} \pmb a &= \pmb x_a - \pmb \mu_a \\ \pmb b &= \pmb x_b - \pmb \mu_b \\ \pmb b - \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} \pmb a &= \pmb x_b - ( \pmb \mu_b + \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} (\pmb x_a - \pmb \mu_a) ) \\ \pmb \Delta_{aa} &= \pmb \Sigma_{bb} - \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} \pmb \Sigma_{ab} \end{split}
abb−ΣbaΣaa−1aΔaa=xa−μa=xb−μb=xb−(μb+ΣbaΣaa−1(xa−μa))=Σbb−ΣbaΣaa−1Σab
结论:
p ( x a ) ∝ N ( μ a , Σ a a ) p ( x b ∣ x a ) ∝ N ( μ b + Σ b a Σ a a − 1 ( x a − μ a ) , Σ b b − Σ b a Σ a a − 1 Σ a b ) ∝ N ( μ b + Σ b a Σ a a − 1 ( x a − μ a ) , Δ a a ) \begin{split} p(\pmb x_a) &\propto \mathcal N(\pmb \mu_a,\pmb \Sigma_{aa}) \\ p(\pmb x_b | \pmb x_a) & \propto \mathcal N(\pmb \mu_b + \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} (\pmb x_a - \pmb \mu_a) , \pmb \Sigma_{bb} - \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} \pmb \Sigma_{ab}) \\ &\propto \mathcal N(\pmb \mu_b + \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} (\pmb x_a - \pmb \mu_a),\pmb \Delta_{aa}) \end{split} p(xa)p(xb∣xa)∝N(μa,Σaa)∝N(μb+ΣbaΣaa−1(xa−μa),Σbb−ΣbaΣaa−1Σab)∝N(μb+ΣbaΣaa−1(xa−μa),Δaa)
信息矩阵表达
[ Λ a a Λ a b Λ b a Λ b b ] = [ I − Σ a a − 1 Σ a b 0 I ] [ Σ a a − 1 0 0 Δ a a − 1 ] [ I 0 − Σ b a Σ a a − 1 I ] = [ Σ a a − 1 − Σ a a − 1 Σ a b Δ a a − 1 0 Δ a a − 1 ] [ I 0 − Σ b a Σ a a − 1 I ] = [ Σ a a − 1 + Σ a a − 1 Σ a b Δ a a − 1 Σ b a Σ a a − 1 − Σ a a − 1 Σ a b Δ a a − 1 − Δ a a − 1 Σ b a Σ a a − 1 Δ a a − 1 ] \begin{split} \begin{bmatrix} \pmb \Lambda_{aa} & \pmb \Lambda_{ab} \\ \pmb \Lambda_{ba} & \pmb \Lambda_{bb} \end{bmatrix} &= \begin{bmatrix} \pmb I & -\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab} \\ \pmb 0 & \pmb I \end{bmatrix} \begin{bmatrix} \pmb \Sigma_{aa}^{-1} & \pmb 0 \\ \pmb 0 & \pmb \Delta_{aa}^{-1} \end{bmatrix} \begin{bmatrix} \pmb I & \pmb 0 \\ -\pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} & \pmb I \end{bmatrix} \\ &= \begin{bmatrix} \pmb \Sigma_{aa}^{-1} & -\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab}\pmb \Delta_{aa}^{-1} \\ \pmb 0 & \pmb \Delta_{aa}^{-1} \end{bmatrix} \begin{bmatrix} \pmb I & \pmb 0 \\ -\pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} & \pmb I \end{bmatrix} \\ &= \begin{bmatrix} \pmb \Sigma_{aa}^{-1}+\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab}\pmb \Delta_{aa}^{-1}\pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} & -\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab}\pmb \Delta_{aa}^{-1} \\ - \pmb \Delta_{aa}^{-1} \pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} & \pmb \Delta_{aa}^{-1} \end{bmatrix} \\ \end{split} [ΛaaΛbaΛabΛbb]=[I0−Σaa−1ΣabI][Σaa−100Δaa−1][I−ΣbaΣaa−10I]=[Σaa−10−Σaa−1ΣabΔaa−1Δaa−1][I−ΣbaΣaa−10I]=[Σaa−1+Σaa−1ΣabΔaa−1ΣbaΣaa−1−Δaa−1ΣbaΣaa−1−Σaa−1ΣabΔaa−1Δaa−1]
所以:
Λ
b
b
=
Δ
a
a
−
1
Λ
a
b
=
−
Σ
a
a
−
1
Σ
a
b
Δ
a
a
−
1
Λ
b
a
=
−
Δ
a
a
−
1
Σ
b
a
Σ
a
a
−
1
Λ
a
a
=
Σ
a
a
−
1
+
Σ
a
a
−
1
Σ
a
b
Δ
a
a
−
1
⏟
−
Λ
a
b
Σ
b
a
Σ
a
a
−
1
⏟
−
Λ
b
b
−
1
Λ
b
a
=
Σ
a
a
−
1
+
Λ
a
b
Λ
b
b
−
1
Λ
b
a
Σ
a
a
−
1
=
Λ
a
a
−
Λ
a
b
Λ
b
b
−
1
Λ
b
a
\begin{split} \pmb \Lambda_{bb} &= \pmb \Delta_{aa}^{-1} \\ \pmb \Lambda_{ab} &= -\pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab}\pmb \Delta_{aa}^{-1} \\ \pmb \Lambda_{ba} &= -\pmb \Delta_{aa}^{-1} \pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1} \\ \pmb \Lambda_{aa} &= \pmb \Sigma_{aa}^{-1} + \underbrace{ \pmb \Sigma_{aa}^{-1} \pmb\Sigma_{ab}\pmb \Delta_{aa}^{-1} }_{-\pmb \Lambda_{ab}} \underbrace{\pmb \Sigma_{ba} \pmb\Sigma_{aa}^{-1}}_{-\pmb \Lambda_{bb}^{-1} \pmb \Lambda_{ba} } \\ &= \pmb \Sigma_{aa}^{-1} + \pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1} \pmb \Lambda_{ba} \\ \pmb \Sigma_{aa}^{-1} &= \pmb \Lambda_{aa} - \pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1} \pmb \Lambda_{ba} \\ \end{split}
ΛbbΛabΛbaΛaaΣaa−1=Δaa−1=−Σaa−1ΣabΔaa−1=−Δaa−1ΣbaΣaa−1=Σaa−1+−Λab
Σaa−1ΣabΔaa−1−Λbb−1Λba
ΣbaΣaa−1=Σaa−1+ΛabΛbb−1Λba=Λaa−ΛabΛbb−1Λba
有定义:
η
=
Σ
−
1
μ
=
[
Λ
a
a
Λ
a
b
Λ
b
a
Λ
b
b
]
[
μ
a
μ
b
]
[
η
a
η
b
]
=
[
Λ
a
a
μ
a
+
Λ
a
b
μ
b
Λ
b
a
μ
a
+
Λ
b
b
μ
b
]
\begin{split} \pmb \eta &= \pmb \Sigma^{-1} \pmb \mu \\ &= \begin{bmatrix} \pmb \Lambda_{aa} & \pmb \Lambda_{ab} \\ \pmb \Lambda_{ba} & \pmb \Lambda_{bb} \end{bmatrix} \begin{bmatrix} \pmb \mu_a \\ \pmb \mu_b \end{bmatrix} \\ \begin{bmatrix} \pmb \eta_a \\ \pmb \eta_b \end{bmatrix} &=\begin{bmatrix} \pmb \Lambda_{aa}\pmb \mu_a+\pmb \Lambda_{ab}\pmb \mu_b \\ \pmb \Lambda_{ba}\pmb \mu_a+\pmb \Lambda_{bb}\pmb \mu_b \end{bmatrix} \end{split}
η[ηaηb]=Σ−1μ=[ΛaaΛbaΛabΛbb][μaμb]=[Λaaμa+ΛabμbΛbaμa+Λbbμb]
对
p
(
a
)
p(\pmb a)
p(a)有:
η
=
Σ
a
a
−
1
μ
a
=
(
Λ
a
a
−
Λ
a
b
Λ
b
b
−
1
Λ
b
a
)
μ
a
=
Λ
a
a
μ
a
−
Λ
a
b
Λ
b
b
−
1
Λ
b
a
μ
a
=
η
a
−
Λ
a
b
μ
b
−
Λ
a
b
Λ
b
b
−
1
(
η
b
−
Λ
b
b
μ
b
)
=
η
a
−
Λ
a
b
Λ
b
b
−
1
η
b
\begin{split} \pmb \eta &= \pmb \Sigma_{aa}^{-1} \pmb \mu_a \\ &= (\pmb \Lambda_{aa} - \pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1} \pmb \Lambda_{ba}) \pmb \mu_a \\ &= \pmb \Lambda_{aa} \pmb \mu_a - \pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1} \pmb \Lambda_{ba} \pmb \mu_a \\ &= \pmb \eta_a - \pmb \Lambda_{ab} \pmb \mu_b - \pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1} (\pmb \eta_b - \pmb \Lambda_{bb} \pmb \mu_b) \\ &= \pmb \eta_a - \pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1}\pmb \eta_b \end{split}
η=Σaa−1μa=(Λaa−ΛabΛbb−1Λba)μa=Λaaμa−ΛabΛbb−1Λbaμa=ηa−Λabμb−ΛabΛbb−1(ηb−Λbbμb)=ηa−ΛabΛbb−1ηb
对
p
(
b
∣
a
)
p(\pmb b| \pmb a)
p(b∣a)有
η
=
Δ
a
a
−
1
(
μ
b
+
Σ
b
a
Σ
a
a
−
1
(
x
a
−
μ
a
)
)
=
Λ
b
b
(
μ
b
+
Σ
b
a
Σ
a
a
−
1
⏟
−
Λ
b
b
−
1
Λ
b
a
(
x
a
−
μ
a
)
)
=
η
b
−
Λ
b
a
μ
a
−
Λ
b
b
Λ
b
b
−
1
Λ
b
a
(
x
a
−
μ
a
)
=
η
b
−
Λ
b
a
x
a
\begin{split} \pmb \eta &= \pmb \Delta_{aa}^{-1}(\pmb \mu_b +\pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} (\pmb x_a - \pmb \mu_a)) \\ &= \pmb \Lambda_{bb}(\pmb \mu_b + \underbrace{ \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1}}_{-\pmb \Lambda_{bb}^{-1} \pmb \Lambda_{ba}} (\pmb x_a - \pmb \mu_a)) \\ &= \pmb \eta_b - \pmb \Lambda_{ba} \pmb \mu_a - \pmb \Lambda_{bb}\pmb \Lambda_{bb}^{-1}\pmb \Lambda_{ba}(\pmb x_a - \pmb \mu_a) \\ &= \pmb \eta_b - \pmb \Lambda_{ba} \pmb x_a \end{split}
η=Δaa−1(μb+ΣbaΣaa−1(xa−μa))=Λbb(μb+−Λbb−1Λba
ΣbaΣaa−1(xa−μa))=ηb−Λbaμa−ΛbbΛbb−1Λba(xa−μa)=ηb−Λbaxa
总结
p ( x ) ∝ N ( [ x a x b ] , [ Σ a a Σ a b Σ b a Σ b b ] ) ∝ N − 1 ( [ η a η b ] , [ Λ a a Λ a b Λ b a Λ b b ] ) \begin{split} p(\pmb x) \propto \mathcal N(\begin{bmatrix} \pmb x_a \\ \pmb x_b \end{bmatrix}, \begin{bmatrix} \pmb \Sigma_{aa} & \pmb \Sigma_{ab} \\ \pmb \Sigma_{ba} & \pmb \Sigma_{bb} \end{bmatrix}) \propto \mathcal N^{-1}(\begin{bmatrix} \pmb \eta_a \\ \pmb \eta_b \end{bmatrix}, \begin{bmatrix} \pmb \Lambda_{aa} & \pmb \Lambda_{ab} \\ \pmb \Lambda_{ba} & \pmb \Lambda_{bb} \end{bmatrix}) \end{split} p(x)∝N([xaxb],[ΣaaΣbaΣabΣbb])∝N−1([ηaηb],[ΛaaΛbaΛabΛbb])
边际概率 p ( x a ) p(\pmb x_a) p(xa) | 条件概率 p ( x b x a ) p(\pmb x_b\ \pmb x_a) p(xb xa) | |
---|---|---|
协方差矩阵 | μ = μ a Σ = Σ a a \pmb \mu = \pmb \mu_a \\ \pmb \Sigma = \pmb \Sigma_{aa} μ=μaΣ=Σaa | μ = μ b + Σ b a Σ a a − 1 ( x a − μ a ) Σ = Σ b b − Σ b a Σ a a − 1 Σ a b \pmb \mu=\pmb \mu_b + \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} (\pmb x_a - \pmb \mu_a)\\ \pmb \Sigma = \pmb \Sigma_{bb} - \pmb \Sigma_{ba} \pmb \Sigma_{aa}^{-1} \pmb \Sigma_{ab} μ=μb+ΣbaΣaa−1(xa−μa)Σ=Σbb−ΣbaΣaa−1Σab |
信息矩阵 | η = η a − Λ a b Λ b b − 1 η b Λ = Λ a a − Λ a b Λ b b − 1 Λ b a \pmb \eta =\pmb \eta_a - \pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1}\pmb \eta_b \\ \pmb \Lambda = \pmb \Lambda_{aa}-\pmb \Lambda_{ab} \pmb \Lambda_{bb}^{-1} \pmb \Lambda_{ba} η=ηa−ΛabΛbb−1ηbΛ=Λaa−ΛabΛbb−1Λba | η = η b − Λ b a x a Λ = Λ b b \pmb \eta = \pmb \eta_b - \pmb \Lambda_{ba} \pmb x_a \\\pmb \Lambda = \pmb \Lambda_{bb} η=ηb−ΛbaxaΛ=Λbb |