IMU数学模型
ω ~ t b = ω t b + b t g + n t g a ~ t b = a t b + b t a + n t a = R w t ( a t w − g w ) + b t a + n t a \begin{split} \tilde {\pmb\omega}^b_t &= {\pmb\omega}^b_t + {\pmb b}^g_t + {\pmb n}^g_t \\ \tilde {\pmb a}^b_t &= \pmb a^b_t + {\pmb b}^a_t + {\pmb n}^a_t \\ &= {\pmb R}^t_w({\pmb a}^w_t - {\pmb g}^w) + {\pmb b}^a_t + {\pmb n}^a_t \\ \end{split} ω~tba~tb=ωtb+btg+ntg=atb+bta+nta=Rwt(atw−gw)+bta+nta
- ω ~ t b \tilde{\pmb \omega}_t^b ω~tb: t t t时刻陀螺仪的读数,上标 b b b表示在Body系
- ω t b \pmb \omega_t^b ωtb:角速度真值
- b t g \pmb b_t^g btg:陀螺仪的随机游走
- n t g \pmb n_t^g ntg:陀螺仪的噪声
- a ~ t b \tilde{\pmb a}_t^b a~tb:加速计的度数
- a t b \pmb a^b_t atb:Body系下加速度真值,其包含重力加速度 g w \pmb g^w gw
- R w t \pmb R_w^t Rwt:世界系到 t t t时刻Body系的旋转
- a t w \pmb a_t^w atw:世界系下加速度得真值,不包含重力加速度 g w \pmb g^w gw
- g w \pmb g^w gw:世界系下重力加速度
- b t a \pmb b_t^a bta:加速计的随机游走
- n t a \pmb n_t^a nta:加速计的噪声
噪声性质:
连续时间:
n
t
g
∼
N
(
0
,
σ
g
2
)
n
t
a
∼
N
(
0
,
σ
a
2
)
n
t
b
a
=
b
˙
t
a
∼
N
(
0
,
σ
b
a
2
)
n
t
b
g
=
b
˙
t
g
∼
N
(
0
,
σ
b
g
2
)
离散时间:采样间隔
Δ
t
n
k
g
∼
N
(
0
,
1
Δ
t
σ
g
2
)
n
k
a
∼
N
(
0
,
1
Δ
t
σ
a
2
)
n
k
b
a
=
b
˙
k
a
∼
N
(
0
,
Δ
t
σ
b
a
2
)
n
k
b
g
=
b
˙
k
g
∼
N
(
0
,
Δ
t
σ
b
g
2
)
\begin{split} 连续时间: \\ {\pmb n}_t^g &\sim \mathcal N(\pmb 0, \pmb \sigma^2_g) \\ {\pmb n}_t^a &\sim \mathcal N(\pmb0, \pmb \sigma^2_a) \\ \pmb n^{ba}_t = \dot{\pmb b}_t^a &\sim \mathcal N(\pmb0, \pmb \sigma^2_{ba}) \\ \pmb n^{bg}_t = \dot{\pmb b}_t^g &\sim \mathcal N(\pmb0, \pmb \sigma^2_{bg}) \\ 离散时间:采样间隔\Delta t\\ {\pmb n}_k^g &\sim \mathcal N(\pmb0, \frac{1}{\Delta t} \pmb \sigma^2_g) \\ {\pmb n}_k^a &\sim \mathcal N(\pmb0, \frac{1}{\Delta t} \pmb \sigma^2_a) \\ \pmb n^{ba}_k = \dot{\pmb b}_k^a &\sim \mathcal N(\pmb0,\Delta t \pmb \sigma^2_{ba}) \\ \pmb n^{bg}_k = \dot{\pmb b}_k^g &\sim \mathcal N(\pmb0, \Delta t \pmb \sigma^2_{bg}) \\ \end{split}
连续时间:ntgntantba=b˙tantbg=b˙tg离散时间:采样间隔Δtnkgnkankba=b˙kankbg=b˙kg∼N(0,σg2)∼N(0,σa2)∼N(0,σba2)∼N(0,σbg2)∼N(0,Δt1σg2)∼N(0,Δt1σa2)∼N(0,Δtσba2)∼N(0,Δtσbg2)
连续时间积分
状态变量: [ p t w , v t w , q t w , b t a , b t g ] T [\pmb p_t^w,\pmb v_t^w,\pmb q_t^w,\pmb b_t^a,\pmb b_t^g]^T [ptw,vtw,qtw,bta,btg]T
- p t w \pmb p_t^w ptw: t t t时刻imu在世界系下的位置
- v t w \pmb v_t^w vtw: t t t时刻imu在世界系下的速度
- q t w \pmb q_t^w qtw: t t t时刻imu相对世界系的旋转
运动模型:
p
˙
t
w
=
v
t
w
v
˙
t
w
=
a
t
w
q
˙
t
w
=
q
t
w
⊗
[
0
1
2
ω
t
b
]
or
R
˙
t
w
=
R
t
w
⋅
[
ω
t
b
]
×
b
˙
t
a
=
n
t
b
a
b
˙
t
g
=
n
t
b
g
\begin{split} \dot{\pmb p}_t^w &= \pmb v_t^w \\ \dot{\pmb v}_t^w &= \pmb a_t^w \\ \dot{\pmb q}^w_t &= \pmb q^w_t \otimes \begin{bmatrix} 0 \\ \frac12 \pmb \omega^b_t \end{bmatrix} \\ \text{or} \quad\dot{\pmb R}^w_t &= \pmb R^w_t \cdot [\pmb \omega^b_t]_{\times}\\ \dot{\pmb b}^a_t &= \pmb n^{ba}_t \\ \dot{\pmb b}_t^g &= \pmb n^{bg}_t \\ \end{split}
p˙twv˙twq˙tworR˙twb˙tab˙tg=vtw=atw=qtw⊗[021ωtb]=Rtw⋅[ωtb]×=ntba=ntbg
从
t
t
t时刻到
t
+
Δ
t
t+\Delta t
t+Δt时刻状态积分
p
t
+
Δ
t
w
=
p
t
w
+
∫
t
t
+
Δ
t
v
τ
w
d
τ
+
∬
t
t
+
Δ
t
a
τ
w
d
τ
2
=
p
t
w
+
∫
t
t
+
Δ
t
v
τ
w
d
τ
+
∬
t
t
+
Δ
t
(
R
τ
w
a
τ
b
+
g
w
)
d
τ
2
=
p
t
w
+
1
2
g
w
Δ
t
2
+
∫
t
t
+
Δ
t
v
τ
w
d
τ
+
∬
t
t
+
Δ
t
R
τ
w
a
τ
b
d
τ
2
v
t
+
Δ
t
w
=
v
t
w
+
∫
t
t
+
Δ
t
a
τ
w
d
τ
=
v
t
w
+
∫
t
t
+
Δ
t
(
R
τ
w
a
τ
b
+
g
w
)
d
τ
=
v
t
w
+
g
w
Δ
t
+
∫
t
t
+
Δ
t
R
τ
w
a
τ
b
d
τ
q
t
+
Δ
t
w
=
q
t
w
⊗
∫
t
t
+
Δ
t
q
τ
i
⊗
[
0
1
2
ω
τ
b
]
d
τ
R
t
+
Δ
t
w
=
R
t
w
E
x
p
(
∫
t
t
+
Δ
t
ω
τ
b
d
τ
)
\begin{split} \pmb p^w_{t+ \Delta t} &= \pmb p^w_t + \int_{t}^{t+\Delta t} \pmb v^w_\tau d \tau + \iint_{t}^{t+\Delta t} \pmb a^w_\tau d \tau^2 \\ &= \pmb p^w_t + \int_{t}^{t+\Delta t} \pmb v^w_\tau d \tau + \iint_{t}^{t+\Delta t} (\pmb R^w_\tau \pmb a^b_\tau + \pmb g^w) d \tau^2 \\ &= \pmb p^w_t + \frac12 \pmb g^w \Delta t^2 + \int_{t}^{t+\Delta t} \pmb v^w_\tau d \tau + \iint_{t}^{t+\Delta t} \pmb R^w_\tau \pmb a^b_\tau d \tau^2 \\ \pmb v^w_{t+\Delta t} &= \pmb v^w_t + \int_{t}^{t+\Delta t} \pmb a^w_\tau d \tau \\ &= \pmb v^w_t + \int_{t}^{t+\Delta t} (\pmb R^w_\tau \pmb a^b_\tau + \pmb g^w) d \tau \\ &= \pmb v^w_t + \pmb g^w \Delta t + \int_{t}^{t+\Delta t} \pmb R^w_\tau \pmb a^b_\tau d \tau \\ \pmb q^w_{t+\Delta t} &= \pmb q^w_t \otimes \int_{t}^{t+\Delta t} \pmb q^i_\tau \otimes \begin{bmatrix} 0 \\ \frac12 \pmb \omega^b_\tau \end{bmatrix} d \tau \\ \pmb R^w_{t+\Delta t} &= \pmb R^w_t Exp \left( \int_{t}^{t+\Delta t} \pmb \omega^b_\tau d \tau \right) \\ \end{split}
pt+Δtwvt+Δtwqt+ΔtwRt+Δtw=ptw+∫tt+Δtvτwdτ+∬tt+Δtaτwdτ2=ptw+∫tt+Δtvτwdτ+∬tt+Δt(Rτwaτb+gw)dτ2=ptw+21gwΔt2+∫tt+Δtvτwdτ+∬tt+ΔtRτwaτbdτ2=vtw+∫tt+Δtaτwdτ=vtw+∫tt+Δt(Rτwaτb+gw)dτ=vtw+gwΔt+∫tt+ΔtRτwaτbdτ=qtw⊗∫tt+Δtqτi⊗[021ωτb]dτ=RtwExp(∫tt+Δtωτbdτ)
离散时间积分
Imu的采样间隔为
Δ
t
\Delta t
Δt,假设在
Δ
t
\Delta t
Δt时间内
a
t
w
\pmb a^w_t
atw和
ω
t
b
\pmb \omega^b_t
ωtb恒定
p
t
+
Δ
t
w
=
p
t
w
+
v
t
w
Δ
t
+
1
2
g
w
Δ
t
2
+
1
2
R
t
w
a
t
b
Δ
t
2
v
t
+
Δ
t
w
=
v
t
w
+
g
w
Δ
t
+
R
t
w
a
t
b
Δ
t
R
t
+
Δ
t
w
=
R
t
w
E
x
p
(
ω
t
b
Δ
t
)
\begin{split} \pmb p^w_{t+ \Delta t} &= \pmb p^w_t + \pmb v^w_t \Delta t + \frac12 \pmb g^w \Delta t^2 + \frac12 \pmb R^w_t \pmb a^b_t \Delta t^2 \\ \pmb v^w_{t+\Delta t} &= \pmb v^w_t + \pmb g^w \Delta t + \pmb R^w_t \pmb a^b_t \Delta t \\ \pmb R^w_{t+\Delta t} &= \pmb R^w_t Exp(\pmb \omega^b_t \Delta t) \end{split}
pt+Δtwvt+ΔtwRt+Δtw=ptw+vtwΔt+21gwΔt2+21RtwatbΔt2=vtw+gwΔt+RtwatbΔt=RtwExp(ωtbΔt)
离散时间
[
i
,
j
]
[i,j]
[i,j]之间的Imu数据累积:
R
j
w
=
R
i
w
∏
k
=
i
j
−
1
E
x
p
(
ω
k
b
Δ
t
)
v
j
w
=
v
i
w
+
∑
k
=
i
j
−
1
g
w
Δ
t
+
∑
k
=
i
j
−
1
R
k
w
a
k
b
Δ
t
p
j
w
=
p
i
w
+
∑
k
=
i
j
−
1
v
k
w
Δ
t
+
1
2
∑
k
=
i
j
−
1
g
w
Δ
t
2
+
1
2
∑
k
=
i
j
−
1
R
k
w
a
k
b
Δ
t
2
\begin{split} \pmb R^w_j &= \pmb R^w_i \prod_{k=i}^{j-1} Exp(\pmb \omega^b_k \Delta t) \\ \pmb v^w_j &= \pmb v^w_i + \sum_{k=i}^{j-1} \pmb g^w \Delta t + \sum_{k=i}^{j-1} \pmb R^w_k \pmb a^b_k \Delta t \\ \pmb p^w_j &= \pmb p^w_i + \sum_{k=i}^{j-1} \pmb v^w_k \Delta t + \frac12 \sum_{k=i}^{j-1} \pmb g^w \Delta t^2 + \frac12 \sum_{k=i}^{j-1} \pmb R^w_k \pmb a^b_k \Delta t^2 \end{split}
Rjwvjwpjw=Riwk=i∏j−1Exp(ωkbΔt)=viw+k=i∑j−1gwΔt+k=i∑j−1RkwakbΔt=piw+k=i∑j−1vkwΔt+21k=i∑j−1gwΔt2+21k=i∑j−1RkwakbΔt2
离散时间预积分
写法1
上式两侧同时乘以
R
w
i
\pmb R^i_w
Rwi,整理得:
Δ
R
j
i
=
R
w
i
R
j
w
=
∏
k
=
i
j
−
1
E
x
p
(
ω
k
b
Δ
t
)
Δ
v
j
i
=
R
w
i
(
v
j
w
−
v
i
w
−
g
w
Δ
t
i
j
)
=
∑
k
=
i
j
−
1
R
k
i
a
k
b
Δ
t
Δ
p
j
i
=
R
w
i
(
p
j
w
−
p
i
w
−
v
i
w
Δ
t
i
j
−
1
2
g
w
Δ
t
i
j
2
)
=
∑
k
=
i
j
−
1
[
Δ
v
k
i
Δ
t
+
1
2
R
k
i
a
k
b
Δ
t
2
]
\begin{split} \Delta \pmb R^i_j &= \pmb R^i_w \pmb R^w_j = \prod_{k=i}^{j-1} Exp(\pmb \omega^b_k \Delta t) \\ \Delta \pmb v^i_j &= \pmb R^i_w(\pmb v^w_j- \pmb v^w_i - \pmb g^w \Delta t_{ij}) \\ &= \sum_{k=i}^{j-1} \pmb R^i_k \pmb a^b_k \Delta t \\ \Delta \pmb p^i_j &= \pmb R^i_w(\pmb p^w_j-\pmb p^w_i-\pmb v^w_i \Delta t_{ij} - \frac12 \pmb g^w \Delta t^2_{ij}) \\ &= \sum_{k=i}^{j-1} \left[\Delta \pmb v^i_k \Delta t + \frac12 \pmb R^i_k \pmb a^b_k \Delta t^2 \right] \end{split}
ΔRjiΔvjiΔpji=RwiRjw=k=i∏j−1Exp(ωkbΔt)=Rwi(vjw−viw−gwΔtij)=k=i∑j−1RkiakbΔt=Rwi(pjw−piw−viwΔtij−21gwΔtij2)=k=i∑j−1[ΔvkiΔt+21RkiakbΔt2]
其中
Δ
p
j
i
\Delta \pmb p^i_j
Δpji项证明如下:
p
j
w
−
p
i
w
−
v
i
w
Δ
t
i
j
−
1
2
g
w
Δ
t
i
j
2
=
∑
k
=
i
j
−
1
v
k
w
Δ
t
+
1
2
∑
k
=
i
j
−
1
g
w
Δ
t
2
+
1
2
∑
k
=
i
j
−
1
R
k
w
a
k
b
Δ
t
2
−
v
i
w
Δ
t
i
j
−
1
2
g
w
Δ
t
i
j
2
=
∑
k
=
i
j
−
1
v
k
w
Δ
t
−
∑
k
=
i
j
−
1
v
i
w
Δ
t
+
1
2
(
j
−
i
)
g
w
Δ
t
2
−
1
2
(
j
−
i
)
2
g
w
Δ
t
2
+
1
2
∑
k
=
i
j
−
1
R
k
w
a
k
b
Δ
t
2
=
∑
k
=
i
j
−
1
(
v
k
w
−
v
i
w
)
Δ
t
−
∑
k
=
i
j
−
1
(
k
−
i
)
g
w
Δ
t
2
+
1
2
∑
k
=
i
j
−
1
R
k
w
a
k
b
Δ
t
2
=
∑
k
=
i
j
−
1
(
v
k
w
−
v
i
w
−
g
w
Δ
t
i
k
)
Δ
t
+
1
2
∑
k
=
i
j
−
1
R
k
w
a
k
b
Δ
t
2
=
∑
k
=
i
j
−
1
[
R
i
w
Δ
v
k
i
Δ
t
]
+
1
2
∑
k
=
i
j
−
1
R
k
w
a
k
b
Δ
t
2
\begin{split} & \quad \pmb p^w_j-\pmb p^w_i-\pmb v^w_i \Delta t_{ij} - \frac12 \pmb g^w \Delta t^2_{ij} \\ &= \sum_{k=i}^{j-1} \pmb v^w_k \Delta t + \frac12 \sum_{k=i}^{j-1} \pmb g^w \Delta t^2 + \frac12 \sum_{k=i}^{j-1} \pmb R^w_k \pmb a^b_k \Delta t^2 -\pmb v^w_i \Delta t_{ij} - \frac12 \pmb g^w \Delta t^2_{ij} \\ &= \sum_{k=i}^{j-1} \pmb v^w_k \Delta t - \sum_{k=i}^{j-1} \pmb v^w_i \Delta t + \frac12 (j-i) \pmb g^w \Delta t^2 - \frac12(j-i)^2 \pmb g^w \Delta t^2 + \frac12 \sum_{k=i}^{j-1} \pmb R^w_k \pmb a^b_k \Delta t^2 \\ &= \sum_{k=i}^{j-1}(\pmb v^w_k-\pmb v^w_i)\Delta t - \sum_{k=i}^{j-1}(k-i) \pmb g^w \Delta t^2 + \frac12 \sum_{k=i}^{j-1} \pmb R^w_k \pmb a^b_k \Delta t^2 \\ &= \sum_{k=i}^{j-1} (\pmb v^w_k-\pmb v^w_i-\pmb g^w \Delta t_{ik})\Delta t + \frac12 \sum_{k=i}^{j-1} \pmb R^w_k \pmb a^b_k \Delta t^2 \\ &= \sum_{k=i}^{j-1} \left[ \pmb R^w_i \Delta v^i_k \Delta t \right] + \frac12 \sum_{k=i}^{j-1} \pmb R^w_k \pmb a^b_k \Delta t^2 \end{split}
pjw−piw−viwΔtij−21gwΔtij2=k=i∑j−1vkwΔt+21k=i∑j−1gwΔt2+21k=i∑j−1RkwakbΔt2−viwΔtij−21gwΔtij2=k=i∑j−1vkwΔt−k=i∑j−1viwΔt+21(j−i)gwΔt2−21(j−i)2gwΔt2+21k=i∑j−1RkwakbΔt2=k=i∑j−1(vkw−viw)Δt−k=i∑j−1(k−i)gwΔt2+21k=i∑j−1RkwakbΔt2=k=i∑j−1(vkw−viw−gwΔtik)Δt+21k=i∑j−1RkwakbΔt2=k=i∑j−1[RiwΔvkiΔt]+21k=i∑j−1RkwakbΔt2
递推写法:
Δ
R
k
+
1
i
=
Δ
R
k
i
E
x
p
(
ω
k
b
Δ
t
)
Δ
v
k
+
1
i
=
Δ
v
k
i
+
R
k
i
a
k
b
Δ
t
Δ
p
k
+
1
i
=
Δ
p
k
i
+
Δ
v
k
i
Δ
t
+
1
2
R
k
i
a
k
b
Δ
t
2
\begin{split} \Delta \pmb R^i_{k+1} &= \Delta \pmb R^i_k Exp(\pmb \omega^b_{k} \Delta t) \\ \Delta \pmb v^i_{k+1} &= \Delta \pmb v^i_k + \pmb R^i_k \pmb a^b_k \Delta t \\ \Delta \pmb p^i_{k+1} &= \Delta \pmb p^i_k + \Delta \pmb v^i_k \Delta t + \frac12 \pmb R^i_k \pmb a^b_k \Delta t^2 \\ \end{split}
ΔRk+1iΔvk+1iΔpk+1i=ΔRkiExp(ωkbΔt)=Δvki+RkiakbΔt=Δpki+ΔvkiΔt+21RkiakbΔt2
写法2
另一种写法:
R
o
t
a
t
i
o
n
:
γ
k
+
1
i
=
γ
k
i
∘
E
x
p
(
ω
k
b
Δ
t
)
V
e
l
o
c
i
t
y
:
β
k
+
1
i
=
β
k
i
+
γ
k
i
a
k
b
Δ
t
P
o
s
i
t
i
o
n
:
α
k
+
1
i
=
α
k
i
+
β
k
i
Δ
t
+
1
2
γ
k
i
a
k
b
Δ
t
2
\begin{split} Rotation:\pmb \gamma^i_{k+1} &= \pmb \gamma^i_k \circ Exp(\pmb \omega^b_k \Delta t) \\ Velocity:\pmb \beta^i_{k+1} &= \pmb \beta^i_k + \pmb \gamma^i_k \pmb a^b_k \Delta t \\ Position:\pmb \alpha^i_{k+1} &= \pmb \alpha^i_k + \pmb \beta^i_k \Delta t + \frac12 \pmb \gamma^i_k \pmb a^b_k \Delta t^2 \\ \end{split}
Rotation:γk+1iVelocity:βk+1iPosition:αk+1i=γki∘Exp(ωkbΔt)=βki+γkiakbΔt=αki+βkiΔt+21γkiakbΔt2
-
用四元数 S 3 S^3 S3表示 γ \pmb \gamma γ:
γ k + 1 i = γ k i ⊗ E x p ( ω k b Δ t ) = γ k i ⊗ exp ( 1 2 ω k b Δ t ) ≈ γ k i ⊗ [ 1 1 2 ω k b Δ t ] \begin{split} \pmb \gamma^i_{k+1} &= \pmb \gamma^i_k \otimes Exp(\omega^b_k \Delta t) \\ &=\pmb \gamma^i_k \otimes \exp(\frac12 \omega^b_k \Delta t) \\ &\approx \pmb \gamma^i_k \otimes \begin{bmatrix} 1 \\ \frac12 \pmb \omega^b_k \Delta t \end{bmatrix} \end{split} γk+1i=γki⊗Exp(ωkbΔt)=γki⊗exp(21ωkbΔt)≈γki⊗[121ωkbΔt] -
用旋转矩阵 S O ( 3 ) SO(3) SO(3)表示 γ \pmb \gamma γ:
γ k + 1 i = γ k i E x p ( ω k b Δ t ) = γ k i exp ( [ ω k b Δ t ] × ) \begin{split} \pmb \gamma^i_{k+1} &= \pmb \gamma^i_k Exp(\omega^b_k \Delta t) \\ &=\pmb \gamma^i_k \exp([\omega^b_k \Delta t]_{\times}) \end{split} γk+1i=γkiExp(ωkbΔt)=γkiexp([ωkbΔt]×)
这里的一系列的操作只为导出预积分量 [ α , β , γ ] [\pmb \alpha,\pmb \beta,\pmb \gamma] [α,β,γ],它们的计算与系统其他状态无关,只与Imu的输入相关。注意的是预积分量中包含重力加速度的积分量。
欧拉法与中值法
离散时间 [ i , j ] [i,j] [i,j]之间,从第 k k k到 k + 1 k+1 k+1时刻的积分。
欧拉法
ω k b = ω ~ k b − b k g γ k + 1 i = γ k i E x p ( ω k b Δ t ) a k b = a ~ k b − b k a β k + 1 i = β k i + γ k i a k b Δ t α k + 1 i = α k i + β k i Δ t + 1 2 γ k i a k b Δ t 2 b k + 1 a = b k a + n k b a Δ t b k + 1 g = b k g + n k b g Δ t \begin{split} \pmb \omega^b_k &= \tilde{\pmb \omega}^b_k - \pmb b^g_k \\ \pmb \gamma^i_{k+1} &= \pmb \gamma^i_k Exp(\omega^b_k \Delta t) \\ \pmb a^b_k &= \tilde{\pmb a}^b_k - \pmb b^a_k \\ \pmb \beta^i_{k+1} &= \pmb \beta^i_k + \pmb \gamma^i_k \pmb a^b_k \Delta t \\ \pmb \alpha^i_{k+1} &= \pmb \alpha^i_k + \pmb \beta^i_k \Delta t + \frac12 \pmb \gamma^i_k \pmb a^b_k \Delta t^2 \\ \pmb b^a_{k+1} &= \pmb b^a_k + \pmb n^{ba}_k \Delta t \\ \pmb b^g_{k+1} &= \pmb b^g_k + \pmb n^{bg}_k \Delta t \\ \end{split} ωkbγk+1iakbβk+1iαk+1ibk+1abk+1g=ω~kb−bkg=γkiExp(ωkbΔt)=a~kb−bka=βki+γkiakbΔt=αki+βkiΔt+21γkiakbΔt2=bka+nkbaΔt=bkg+nkbgΔt
中值法
ω k b = 1 2 [ ( ω ~ k b − b k g ) + ( ω ~ k + 1 b − b k g ) ] γ k + 1 i = γ k i E x p ( ω k b Δ t ) a k b = 1 2 [ ( a ~ k b − b k a ) + E x p ( ω k b Δ t ) ( a ~ k + 1 b − b k a ) ] β k + 1 i = β k i + γ k i a k b Δ t α k + 1 i = α k i + β k i Δ t + 1 2 γ k i a k b Δ t 2 b k + 1 a = b k a + n k b a Δ t b k + 1 g = b k g + n k b g Δ t \begin{split} \pmb \omega^b_k &= \frac12 [(\tilde{\pmb \omega}^b_k - {\pmb b}_k^g) + ( \tilde{\pmb \omega}^b_{k+1} - {\pmb b}_k^g ) ] \\ \pmb \gamma^i_{k+1} &= \pmb \gamma^i_k Exp(\pmb \omega^b_k \Delta t) \\ \pmb a^b_k & =\frac12 \left[(\tilde{\pmb a}^b_k - \pmb b_k^a) + Exp(\pmb \omega^b_k \Delta t)( \tilde{\pmb a}^b_{k+1} - \pmb b^a_k) \right] \\ \pmb \beta^i_{k+1} &= \pmb \beta^i_k + \pmb \gamma^i_k \pmb a^b_k \Delta t \\ \pmb \alpha^i_{k+1} &= \pmb \alpha^i_k + \pmb \beta^i_k \Delta t + \frac12 \pmb \gamma^i_k \pmb a^b_k \Delta t^2 \\ \pmb b^a_{k+1} &= \pmb b^a_k + \pmb n^{ba}_k \Delta t \\ \pmb b^g_{k+1} &= \pmb b^g_k + \pmb n^{bg}_k \Delta t \\ \end{split} ωkbγk+1iakbβk+1iαk+1ibk+1abk+1g=21[(ω~kb−bkg)+(ω~k+1b−bkg)]=γkiExp(ωkbΔt)=21[(a~kb−bka)+Exp(ωkbΔt)(a~k+1b−bka)]=βki+γkiakbΔt=αki+βkiΔt+21γkiakbΔt2=bka+nkbaΔt=bkg+nkbgΔt
误差卡尔曼运动方程
将真值(true)状态变量写成名义(nominal)“加”误差(error)状态变量的形式,即:
x
=
x
^
⊕
δ
x
\pmb x = \hat{\pmb x} \oplus \delta \pmb x
x=x^⊕δx,需要推导误差项的迭代方程:
x
k
+
1
=
x
^
k
+
1
+
δ
x
k
+
1
=
f
(
x
^
k
+
δ
x
k
,
u
^
k
+
δ
u
k
)
=
f
(
x
^
k
,
u
^
k
)
+
∂
f
∂
x
k
∣
x
^
k
,
u
^
k
⋅
δ
x
k
+
∂
f
∂
u
k
∣
x
^
k
,
u
^
k
⋅
δ
u
k
=
f
(
x
^
k
,
u
^
k
)
+
∂
f
∂
x
k
∣
x
^
k
,
u
^
k
⋅
δ
x
k
+
∂
f
∂
u
k
∣
x
^
k
,
u
^
k
⋅
∂
δ
u
k
∂
n
k
⋅
n
k
=
f
(
x
^
k
,
u
^
k
)
+
∂
f
∂
x
k
∣
x
^
k
,
u
^
k
⋅
δ
x
k
+
∂
f
∂
n
k
∣
x
^
k
,
u
^
k
⋅
n
k
误差递推:
δ
x
k
+
1
=
F
k
⋅
δ
x
k
+
G
k
⋅
n
k
协方差递推:
P
k
+
1
=
F
k
P
k
F
k
T
+
G
k
Q
G
k
T
\begin{split} \pmb x_{k+1} = \hat{\pmb x}_{k+1} + \delta \pmb x_{k+1} &= \pmb f(\hat{\pmb x}_{k} + \delta \pmb x_{k}, \hat{\pmb u}_{k} + \delta \pmb u_{k}) \\ &= \pmb f(\hat{\pmb x}_{k}, \hat{\pmb u}_{k}) + \left. \frac{\partial \pmb f}{\partial \pmb x_k} \right|_{\hat{\pmb x}_k,\hat{\pmb u}_{k}} \cdot \delta \pmb x_k + \left.\frac{\partial \pmb f}{\partial \pmb u_k} \right| _{\hat{\pmb x}_k,\hat{\pmb u}_{k}} \cdot \delta \pmb u_{k} \\ &= \pmb f(\hat{\pmb x}_{k}, \hat{\pmb u}_{k}) + \left. \frac{\partial \pmb f}{\partial \pmb x_k} \right|_{\hat{\pmb x}_k,\hat{\pmb u}_{k}} \cdot \delta \pmb x_k + \left.\frac{\partial \pmb f}{\partial \pmb u_k} \right| _{\hat{\pmb x}_k,\hat{\pmb u}_{k}} \cdot \frac{\partial \delta \pmb u_k}{\partial \pmb n_k} \cdot \pmb n_{k} \\ &= \pmb f(\hat{\pmb x}_{k}, \hat{\pmb u}_{k}) + \left. \frac{\partial \pmb f}{\partial \pmb x_k} \right|_{\hat{\pmb x}_k,\hat{\pmb u}_{k}} \cdot \delta \pmb x_k + \left.\frac{\partial \pmb f}{\partial \pmb n_k} \right| _{\hat{\pmb x}_k,\hat{\pmb u}_{k}} \cdot \pmb n_{k} \\ 误差递推: \delta \pmb x_{k+1} &= \pmb F_k \cdot \delta \pmb x_k + \pmb G_{k} \cdot \pmb n_{k} \\ 协方差递推:{\pmb P}_{k+1} &= \pmb F_k \pmb P_k \pmb F_k^T + \pmb G_k \pmb Q \pmb G_k^T \end{split}
xk+1=x^k+1+δxk+1误差递推:δxk+1协方差递推:Pk+1=f(x^k+δxk,u^k+δuk)=f(x^k,u^k)+∂xk∂f
x^k,u^k⋅δxk+∂uk∂f
x^k,u^k⋅δuk=f(x^k,u^k)+∂xk∂f
x^k,u^k⋅δxk+∂uk∂f
x^k,u^k⋅∂nk∂δuk⋅nk=f(x^k,u^k)+∂xk∂f
x^k,u^k⋅δxk+∂nk∂f
x^k,u^k⋅nk=Fk⋅δxk+Gk⋅nk=FkPkFkT+GkQGkT
这里运动方程
f
(
)
\pmb f()
f()采用中值法,采样扰动求导的方法。
k k k时刻真值状态变量 x k \pmb x_k xk | k k k时刻名义状态变量 | k k k时刻误差状态变量 | k k k时刻相关噪声项 |
---|---|---|---|
x k = [ α k i θ k i β k i b k a b k g ] ∈ R 15 \pmb x_k = \begin{bmatrix} \pmb \alpha^i_k \\ \pmb \theta^i_k \\ \pmb \beta^i_k \\\pmb b^a_k \\ \pmb b^g_k \end{bmatrix} \in \mathbb R^{15} xk= αkiθkiβkibkabkg ∈R15 | x ^ k = [ α ^ k i θ ^ k i β ^ k i b ^ k a b ^ k g ] ∈ R 15 \hat{\pmb x}_k = \begin{bmatrix} \hat{\pmb \alpha}^i_k \\ \hat{\pmb \theta}^i_k \\ \hat{\pmb \beta}^i_k \\ \hat{\pmb b}^a_k \\ \hat{\pmb b}^g_k \end{bmatrix} \in \mathbb R^{15} x^k= α^kiθ^kiβ^kib^kab^kg ∈R15 | δ x k = [ δ α k i δ θ k i δ β k i δ b k a δ b k g ] ∈ R 15 \delta \pmb x_k = \begin{bmatrix} \delta \pmb \alpha^i_k \\ \delta \pmb \theta^i_k \\ \delta \pmb \beta^i_k \\ \delta \pmb b^a_k \\ \delta \pmb b^g_k \end{bmatrix} \in \mathbb R^{15} δxk= δαkiδθkiδβkiδbkaδbkg ∈R15 | n k = [ n k a n k g n k + 1 a n k + 1 a n k b a n k b g ] ∈ R 18 \pmb n_k = \begin{bmatrix} \pmb n^a_k \\ \pmb n^g_k \\ \pmb n^a_{k+1} \\ \pmb n^a_{k+1} \\ \pmb n^{ba}_k \\ \pmb n^{bg}_k \end{bmatrix} \in \mathbb R^{18} nk= nkankgnk+1ank+1ankbankbg ∈R18 |
- 雅可比矩阵 F k ∈ R 15 × 15 , G k ∈ R 15 × 18 \pmb F_k \in \mathbb R^{15 \times 15}, \pmb G_k \in \mathbb R^{15 \times 18} Fk∈R15×15,Gk∈R15×18
- 协方差矩阵 P k ∈ R 15 × 15 , Q ∈ R 18 × 18 \pmb P_k \in \mathbb R^{15 \times 15}, \pmb Q \in \mathbb R^{18 \times 18} Pk∈R15×15,Q∈R18×18
- θ k i ∈ R 3 γ k i = E x p ( θ k i ) ∈ S O ( 3 ) \pmb \theta^i_k \in \mathbb R^3 \quad \pmb \gamma^i_k = Exp(\pmb \theta^i_k) \in SO(3) θki∈R3γki=Exp(θki)∈SO(3)
雅可比计算可采用如下方式:
∂
x
k
+
1
∂
x
k
∣
x
^
k
=
lim
δ
x
k
→
0
f
(
x
^
k
+
δ
x
k
)
−
f
(
x
^
k
)
∂
δ
x
k
\begin{split} \left . \frac{\partial \pmb x_{k+1}}{\partial \pmb x_k} \right|_{\hat{\pmb x}_{k}} = \lim_{\delta \pmb x_k \rightarrow \pmb 0} \frac{\pmb f(\hat{\pmb x}_{k} + \delta \pmb x_k) - f(\hat{\pmb x}_{k})}{\partial \delta \pmb x_k} \\ \end{split}
∂xk∂xk+1
x^k=δxk→0lim∂δxkf(x^k+δxk)−f(x^k)
将
f
(
x
^
k
+
δ
x
k
)
\pmb f(\hat{\pmb x}_{k} + \delta \pmb x_k)
f(x^k+δxk)可以整理为
f
(
x
^
k
)
+
f
˙
(
x
^
k
)
⋅
δ
x
k
\pmb f(\hat{\pmb x}_{k}) + \dot{\pmb f}(\hat{\pmb x}_{k}) \cdot \delta \pmb x_k
f(x^k)+f˙(x^k)⋅δxk的形式,可得到雅可比:
f
˙
(
x
^
k
)
\dot{\pmb f}(\hat{\pmb x}_{k})
f˙(x^k)
真值状态变量:
b
k
+
1
a
=
b
k
a
+
n
k
b
a
Δ
t
b
k
+
1
g
=
b
k
g
+
n
k
b
g
Δ
t
ω
k
b
=
1
2
[
(
ω
~
k
b
−
b
k
g
+
n
k
g
)
+
(
ω
~
k
+
1
b
−
b
k
+
1
g
+
n
k
+
1
g
)
]
θ
k
+
1
i
=
θ
k
i
+
ω
k
b
Δ
t
γ
k
+
1
i
=
γ
k
i
E
x
p
(
ω
k
b
Δ
t
)
a
k
b
=
1
2
[
(
a
~
k
b
−
b
k
a
+
n
k
a
)
+
E
x
p
(
ω
k
b
Δ
t
)
(
a
~
k
+
1
b
−
b
k
+
1
a
+
n
k
+
1
a
)
]
β
k
+
1
i
=
β
k
i
+
γ
k
i
a
k
b
Δ
t
α
k
+
1
i
=
α
k
i
+
β
k
i
Δ
t
+
1
2
γ
k
i
a
k
b
Δ
t
2
\begin{split} \pmb b^a_{k+1} &= \pmb b^a_k + \pmb n^{ba}_k \Delta t \\ \pmb b^g_{k+1} &= \pmb b^g_k + \pmb n^{bg}_k \Delta t \\ \pmb \omega^b_k &= \frac12 \left[(\tilde{\pmb \omega}^b_k - {\pmb b}^g_k + \pmb n^g_k) + ( \tilde{\pmb \omega}^b_{k+1} - {\pmb b}^g_{k+1} + \pmb n^g_{k+1}) \right] \\ {\pmb \theta}^i_{k+1} &= {\pmb \theta}^i_{k} + {\pmb \omega}^b_k \Delta t \\ \pmb \gamma^i_{k+1} &= \pmb \gamma^i_k Exp(\pmb \omega^b_k \Delta t)\\ \pmb a^b_k & =\frac12 \left[(\tilde{\pmb a}^b_k - \pmb b^a_k + \pmb n^a_k) + Exp(\pmb \omega^b_k \Delta t)( \tilde{\pmb a}^b_{k+1} - \pmb b^a_{k+1} + \pmb n^a_{k+1}) \right] \\ \pmb \beta^i_{k+1} &= \pmb \beta^i_k + \pmb \gamma^i_k \pmb a^b_k \Delta t \\ \pmb \alpha^i_{k+1} &= \pmb \alpha^i_k + \pmb \beta^i_k \Delta t + \frac12 \pmb \gamma^i_k \pmb a^b_k \Delta t^2 \\ \end{split}
bk+1abk+1gωkbθk+1iγk+1iakbβk+1iαk+1i=bka+nkbaΔt=bkg+nkbgΔt=21[(ω~kb−bkg+nkg)+(ω~k+1b−bk+1g+nk+1g)]=θki+ωkbΔt=γkiExp(ωkbΔt)=21[(a~kb−bka+nka)+Exp(ωkbΔt)(a~k+1b−bk+1a+nk+1a)]=βki+γkiakbΔt=αki+βkiΔt+21γkiakbΔt2
名义状态变量:
将原始的Imu数据中值法进行积分。
b
^
k
+
1
a
=
b
^
k
a
b
^
k
+
1
g
=
b
^
k
g
ω
^
k
b
=
1
2
[
(
ω
~
k
b
−
b
^
k
g
)
+
(
ω
~
k
+
1
b
−
b
^
k
g
)
]
θ
^
k
+
1
i
=
θ
^
k
i
+
ω
^
k
b
Δ
t
γ
^
k
+
1
i
=
γ
^
k
i
E
x
p
(
ω
^
k
b
Δ
t
)
a
^
k
b
=
1
2
[
(
a
~
k
b
−
b
^
k
a
)
+
E
x
p
(
ω
^
k
b
Δ
t
)
(
a
~
k
+
1
b
−
b
^
k
a
)
]
β
^
k
+
1
i
=
β
^
k
i
+
γ
^
k
i
a
^
k
b
Δ
t
α
^
k
+
1
i
=
α
^
k
i
+
β
^
k
i
Δ
t
+
1
2
γ
^
k
i
a
^
k
b
Δ
t
2
\begin{split} \hat{\pmb b}^a_{k+1} &= \hat{\pmb b}^a_k \\ \hat{\pmb b}^g_{k+1} &= \hat{\pmb b}^g_k \\ \hat{\pmb \omega}^b_k &= \frac12 \left[(\tilde{\pmb \omega}^b_k - \hat{\pmb b}_k^g) + ( \tilde{\pmb \omega}^b_{k+1} - \hat{\pmb b}_k^g ) \right] \\ \hat{\pmb \theta}^i_{k+1} &= \hat{\pmb \theta}^i_{k} + \hat{\pmb \omega}^b_k \Delta t \\ \hat{\pmb \gamma}^i_{k+1} &= \hat{\pmb \gamma}^i_k Exp(\hat{\pmb \omega}^b_k \Delta t) \\ \hat{\pmb a}^b_k & =\frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_k) \right] \\ \hat{\pmb \beta}^i_{k+1} &= \hat{\pmb \beta}^i_k + \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t \\ \hat{\pmb \alpha}^i_{k+1} &= \hat{\pmb \alpha}^i_k + \hat{\pmb \beta}^i_k \Delta t + \frac12 \hat{\pmb \gamma}^i_k \hat{\pmb a}^b_k \Delta t^2 \\ \end{split}
b^k+1ab^k+1gω^kbθ^k+1iγ^k+1ia^kbβ^k+1iα^k+1i=b^ka=b^kg=21[(ω~kb−b^kg)+(ω~k+1b−b^kg)]=θ^ki+ω^kbΔt=γ^kiExp(ω^kbΔt)=21[(a~kb−b^ka)+Exp(ω^kbΔt)(a~k+1b−b^ka)]=β^ki+γ^kia^kbΔt=α^ki+β^kiΔt+21γ^kia^kbΔt2
其中隐含的的等价:
-
陀螺仪噪声不可观, n ^ k g = n ^ k + 1 g = 0 \hat{\pmb n}^g_k = \hat{\pmb n}^g_{k+1} = \pmb 0 n^kg=n^k+1g=0,偏置噪声不可观, n ^ k b g = 0 \hat{\pmb n}^{bg}_k=\pmb 0 n^kbg=0
b ^ k + 1 g = b ^ k g + n ^ k b g Δ t = b ^ k g ω ^ k b = 1 2 [ ( ω ~ k b − b ^ k g + n ^ k a ) + ( ω ~ k + 1 b − b ^ k + 1 g + n ^ k + 1 a ) ] = 1 2 [ ( ω ~ k b − b ^ k g ) + ( ω ~ k + 1 b − b ^ k g ) ] \begin{split} \hat{\pmb b}^g_{k+1} &= \hat{\pmb b}^g_k + \hat{\pmb n}^{bg}_k \Delta t \\ &= \hat{\pmb b}^g_k \\ \hat{\pmb \omega}^b_k &= \frac12 \left[(\tilde{\pmb \omega}^b_k - \hat{\pmb b}_k^g + \hat{\pmb n}^a_k ) + ( \tilde{\pmb \omega}^b_{k+1} - \hat{\pmb b}^g_{k+1} + \hat{\pmb n}^a_{k+1}) \right] \\ &= \frac12 \left[(\tilde{\pmb \omega}^b_k - \hat{\pmb b}_k^g) + ( \tilde{\pmb \omega}^b_{k+1} - \hat{\pmb b}^g_{k}) \right] \end{split} b^k+1gω^kb=b^kg+n^kbgΔt=b^kg=21[(ω~kb−b^kg+n^ka)+(ω~k+1b−b^k+1g+n^k+1a)]=21[(ω~kb−b^kg)+(ω~k+1b−b^kg)] -
加速计噪声不可观, n ^ k a = n ^ k + 1 a = 0 \hat{\pmb n}^a_k = \hat{\pmb n}^a_{k+1} = \pmb 0 n^ka=n^k+1a=0,偏置噪声不可观, n ^ k b a = 0 \hat{\pmb n}^{ba}_k=\pmb 0 n^kba=0
b ^ k + 1 a = b ^ k a + n ^ k b a Δ t = b ^ k a a ^ k b = 1 2 [ ( a ~ k b − b ^ k a + n ^ k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k + 1 a + n ^ k + 1 a ) ] = 1 2 [ ( a ~ k b − b ^ k a ) + E x p ( ω ^ k b Δ t ) ( a ~ k + 1 b − b ^ k a ) ] \begin{split} \hat{\pmb b}^a_{k+1} &= \hat{\pmb b}^a_k + \hat{\pmb n}^{ba}_k \Delta t \\ &= \hat{\pmb b}^a_k \\ \hat{\pmb a}^b_k &= \frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a + \hat{\pmb n}^a_k ) + Exp(\hat{\pmb \omega}^b_k \Delta t)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_{k+1} + \hat{\pmb n}^a_{k+1}) \right] \\ &=\frac12 \left[(\tilde{\pmb a}^b_k - \hat{\pmb b}_k^a) + Exp(\hat{\pmb \omega}^b_k \Delta t)(\tilde{\pmb a}^b_{k+1} - \hat{\pmb b}^a_{k}) \right] \end{split} b^k+1aa^kb=b^ka+n^kbaΔt=b^ka=21[(a~kb−b^ka+n^ka)+Exp(ω^kbΔt)(a~k+1b−b^k+1a+n^k+1a)]=21[(a~kb−b^ka)+Exp(ω^kbΔt)(a~k+1b−b^ka)]
预积分量的雅可比推导见:
链接: 对状态变量雅可比推导
链接: 对噪声雅可比推导
预积分结果分析
假设从 i i i时刻到 j j j时刻,对Imu数据进行预积分,共迭代 K = j − i K=j-i K=j−i次。
初始状态:
x
i
=
[
α
i
i
θ
i
i
β
i
i
b
i
a
b
i
g
]
=
[
0
0
0
b
i
a
b
i
g
]
δ
x
i
=
[
δ
α
i
i
δ
θ
i
i
δ
β
i
i
δ
b
i
a
δ
b
i
g
]
=
[
0
0
0
0
0
]
P
i
=
C
o
v
(
δ
x
i
)
Q
=
C
o
v
(
n
)
=
d
i
a
g
[
1
Δ
t
σ
a
2
,
1
Δ
t
σ
g
2
,
1
Δ
t
σ
g
2
,
Δ
t
σ
b
a
2
,
Δ
t
σ
b
g
2
]
\begin{split} \pmb x_i &= \begin{bmatrix} \pmb \alpha^i_i \\ \pmb \theta^i_i \\ \pmb \beta^i_i \\\pmb b^a_i \\ \pmb b^g_i \end{bmatrix} = \begin{bmatrix} \pmb 0 \\ \pmb 0 \\ \pmb 0 \\\pmb b^a_i \\ \pmb b^g_i \end{bmatrix} \quad \delta \pmb x_i = \begin{bmatrix} \delta \pmb \alpha^i_i \\ \delta \pmb \theta^i_i \\ \delta \pmb \beta^i_i \\ \delta \pmb b^a_i \\ \delta \pmb b^g_i \end{bmatrix} = \begin{bmatrix} \pmb 0 \\ \pmb 0 \\ \pmb 0 \\\pmb 0 \\ \pmb 0 \end{bmatrix} \\ \\ \pmb P_i &= Cov(\delta \pmb x_i) \\ \pmb Q &= Cov(\pmb n) = diag \left[\frac{1}{\Delta t} \pmb \sigma^2_a, \frac{1}{\Delta t} \pmb \sigma^2_g,\frac{1}{\Delta t} \pmb \sigma^2_g,\Delta t \pmb \sigma^2_{ba},\Delta t \pmb \sigma^2_{bg} \right] \\ \end{split}
xiPiQ=
αiiθiiβiibiabig
=
000biabig
δxi=
δαiiδθiiδβiiδbiaδbig
=
00000
=Cov(δxi)=Cov(n)=diag[Δt1σa2,Δt1σg2,Δt1σg2,Δtσba2,Δtσbg2]
最终状态:
x
^
j
=
[
α
^
j
i
θ
^
j
i
β
^
j
i
b
^
j
a
b
^
j
g
]
δ
x
j
=
[
δ
α
j
i
δ
θ
j
i
δ
β
j
i
δ
b
j
a
δ
b
j
g
]
=
[
0
0
0
0
0
]
J
=
∂
x
K
∂
x
0
=
∏
k
=
K
1
F
k
G
=
∏
k
=
K
1
G
k
P
j
=
C
o
v
(
δ
x
j
)
=
J
P
i
J
T
+
G
Q
G
T
\begin{split} \hat{\pmb x}_j &= \begin{bmatrix} \hat{\pmb \alpha}^i_j \\ \hat{\pmb \theta}^i_j \\ \hat{\pmb \beta}^i_j \\ \hat{\pmb b}^a_j \\ \hat{\pmb b}^g_j \end{bmatrix} \quad \delta \pmb x_j = \begin{bmatrix} \delta \pmb \alpha^i_j \\ \delta \pmb \theta^i_j \\ \delta \pmb \beta^i_j \\ \delta \pmb b^a_j \\ \delta \pmb b^g_j \end{bmatrix} =\begin{bmatrix} \pmb 0 \\ \pmb 0 \\ \pmb 0 \\\pmb 0 \\ \pmb 0 \end{bmatrix} \\ \\ \pmb J &= \frac{\partial \pmb x_K}{\partial \pmb x_0} = \prod_{k=K}^1 \pmb F_k \\ \pmb G &= \prod_{k=K}^{1} \pmb G_k \\ \pmb P_j &= Cov(\delta \pmb x_j) = \pmb J \pmb P_i \pmb J^T + \pmb G \pmb Q \pmb G^T \\ \end{split}
x^jJGPj=
α^jiθ^jiβ^jib^jab^jg
δxj=
δαjiδθjiδβjiδbjaδbjg
=
00000
=∂x0∂xK=k=K∏1Fk=k=K∏1Gk=Cov(δxj)=JPiJT+GQGT
以上迭代都是假设
i
i
i时刻的偏置不变,当偏置更新时,假定预积分观测时随零偏线性变化的。当
i
i
i时刻的偏置有
δ
b
i
a
,
δ
b
i
g
\delta \pmb b^a_i,\delta \pmb b^g_i
δbia,δbig变化时,预积分修正如下:
α
j
i
=
α
^
j
i
+
J
b
a
α
δ
b
i
a
+
J
b
g
α
δ
b
i
g
β
j
i
=
β
^
j
i
+
J
b
a
β
δ
b
i
a
+
J
b
g
β
δ
b
i
g
γ
j
i
=
γ
^
j
i
E
x
p
(
J
b
g
γ
δ
b
i
g
)
\begin{split} {\pmb \alpha}^{i}_{j} &= \hat{\pmb \alpha}^{i}_{j} + {\pmb J}^{\alpha}_{ba} \delta{\pmb b}^a_i + {\pmb J}^{\alpha}_{bg} \delta{\pmb b}^g_i \\ {\pmb \beta}^{i}_{j} &= \hat{\pmb \beta}^{i}_{j} + {\pmb J}^{\beta}_{ba} \delta{\pmb b}^a_i + {\pmb J}^{\beta}_{bg} \delta{\pmb b}^g_i \\ {\pmb \gamma}^{i}_{j} &= \hat{\pmb \gamma}^{i}_{j} Exp\left({\pmb J}^\gamma_{bg} \delta {\pmb b}^g_i \right) \\ \end{split}
αjiβjiγji=α^ji+Jbaαδbia+Jbgαδbig=β^ji+Jbaβδbia+Jbgβδbig=γ^jiExp(Jbgγδbig)
其中:
J
b
a
α
=
∂
α
j
i
∂
b
i
a
J
b
g
α
=
∂
α
j
i
∂
b
i
g
J
b
a
β
=
∂
β
j
i
∂
b
i
a
J
b
g
β
=
∂
β
j
i
∂
b
i
g
J
b
g
γ
=
∂
γ
j
i
∂
b
i
g
\begin{split} &{\pmb J}_{ba}^{\alpha} = \frac{\partial {\pmb \alpha}^i_j}{\partial {\pmb b}_i^a} \quad {\pmb J}_{bg}^{\alpha} = \frac{\partial {\pmb \alpha}^i_j}{\partial {\pmb b}_i^g} \\ &{\pmb J}_{ba}^{\beta} = \frac{\partial {\pmb \beta}^i_j}{\partial {\pmb b}_i^a} \quad {\pmb J}_{bg}^{\beta} = \frac{\partial {\pmb \beta}^i_j}{\partial {\pmb b}_i^g} \\ &{\pmb J}_{bg}^{\gamma} = \frac{\partial {\pmb \gamma}^i_j}{\partial {\pmb b}_i^g} \\ \end{split}
Jbaα=∂bia∂αjiJbgα=∂big∂αjiJbaβ=∂bia∂βjiJbgβ=∂big∂βjiJbgγ=∂big∂γji