戴尔G15的显卡驱动安装方法和其它电脑有些许不同
显卡驱动安装步骤可以按照Ubuntu18.04 安装Nvidia驱动+CUDA+cuDNN+Anaconda3来,但细节有些许不同。
在执行到步骤8,更新配置文件时,会出现以下问题
更新配置文件命令
sudo update-initramfs -u
报错:
update-initramfs: Generating /boot/initrd.img-4.18.0-15-generic
I: The initramfs will attempt to resume from /dev/sda5
I: (UUID=09e25397-4a2c-4fb0-a605-a7013eecb59c)
I: Set the RESUME variable to override this.
此处错误日志是从网上复制过来的,但都是找不到swap分区造成的,解决方法如下:
查看swap分区的UUID
blkid | awk -F\" '/swap/ {print $2}'
配置RESUME文件
sudo gedit /etc/initramfs-tools/conf.d/resume
把查到的分区号存入文件中保存
RESUME=UUID='3320990a-8c6d-4ca5-bd18-ed05bdff61c1'
然后重新运行:
sudo update-initramfs -u
正式安装显卡驱动前一定要保证没有开启显卡直连,不然禁用nouveau后会黑屏进不去系统,
可以在进入系统前按F2进bios SetUP页面,
随后在Display页面的Hybrid Gr aphics / Advanced Optimus 中保证开关为ON状态
然后就可以按照教程安装显卡驱动(或者禁用nouveau后,重启系统时再把开关改为ON)
在装完驱动后,系统重启时不要进入系统,重新按F2进入bios,把刚刚的开关由ON改为OFF,开启显卡直连(此处操作的原因是,CPU的集显会和独显冲突,选择关闭集显,不然会黑屏进不去系统)
然后其它安装步骤如参考所示,在安装cuDNN时,由于cuda/include/下有多个文件,把
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
改为
sudo cp cuda/include/cudnn* /usr/local/cuda/include/
其它照旧,在验证cuDNN是否安装成功时,命令如下:
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
注意:30系显卡开始只能用CUDA11,不要把CUDA版本安装错了
如果使用Pytorch只能选择CUDA11对应的版本
使用tensorflow原则上也只能使用CUDA11,但参考以下教程,可以使用1.15版本的tensorflow
RTX3080+Ubuntu18.04+cuda11.1+cudnn8.0.4+TensorFlow1.15.4+PyTorch1.7.0环境配置