文献阅读(17)FPGA&NAS

该博客介绍了FPGA-implementation aware的神经网络结构搜索(FNAS),旨在解决NAS计算量大且未考虑硬件延迟的问题。FNAS由FNAS-Design、FNAS-GG、FNAS-Sched和FNAS-Analyzer四部分组成,用于在满足FPGA延迟要求的同时最大化CNN加速器的效率。文章提出了基于图模型的延迟分析和针对多个FPGA的调度策略,并探讨了强化学习和进化算法作为搜索网络结构的方法。
摘要由CSDN通过智能技术生成

  • 题目:Accuracy vs. Efficiency Achieving Both through FPGA-Implementation Aware Neural Architecture Search
  • 时间:2019
  • 会议:DAC(IEEE/ACM Design Automation Conference)
  • 研究机构:匹兹堡大学Jingtong Hu

1 缩写 & 引用

  • NAS: Neural Architecture Search
  • TS: timing specifications
  • IFM: input feature map
  • OFM: ouput feature map
  • PS: processing system
  • PL: programming logics

Maximizing CNN Accelerator Efficiency Through Resource Partitioning
Optimizing fpga-based accelerator design for deep convolutional neural networks

2 abstract & introduction & background

就是现在的NAS计算量太大,还没有考虑硬件的延时
主要贡献有:

  • FPGA-implementation aware神经网络搜索架构,叫做FNAS
  • 提出了图模型来分析FPGA的latency
  • 对多个FPGA提出了调度策略

搜索网络结构的两个方向࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值