孟德尔随机化——如何选择工具变量

本文介绍了孟德尔随机化(MR)的研究,包括MR的原理、工具变量选择的重要条件,强调了避免水平和垂直多效性的重要性。敏感性分析如TwoSampleMR和MR-Egger等被提及用于检测工具变量的多效性,同时讨论了异质性检测方法和敏感性分析策略。建议通过阅读高质量MR文章并应用相关R包进行实践。
摘要由CSDN通过智能技术生成

背景知识,推荐阅读:
Guidelines for performing Mendelian randomization investigations
讲了为什么要做MR、MR的原理、工具变量的选择、MR方法、

首先工具变量需要满足三个核心条件
Appraising the Causal Association of
Plasma Homocysteine Levels With
Atrial Fibrillation Risk: A Two-Sample
Mendelian Randomization Study
Ref:Appraising the Causal Association of Plasma Homocysteine Levels With Atrial Fibrillation Risk: A Two-Sample Mendelian Randomization Study

其中B就是horiziontal pleiotroypy,一般就是文章提到的pleiotropy多效性;即这个SNP不只和暴露相关,还和混杂相关(通往结局的通路不同);这样的SNP就是需要排除的。
还有一种就是vertiacal pleiotropy,又称indirect或mediated,就是指这个SNP和一些同样在这条通路上的其他变量相关;暴露和这些变量通往结局的通路相同,起到了中介的作用(下图a-c)。

在这里插入图片描述

输入暴露和结局的数据,然后进行孟德尔随机化分析,得出暴露和结局之间的因果关系。下面是使用TwoSampleMR包进行孟德尔随机化分析的步骤: ```R # 安装TwoSampleMR包 install.packages("TwoSampleMR") 多变量孟德尔随机化是# 加载TwoSampleMR包 library(TwoSampleMR) # 输入暴露和结局的数据 exposure_data <- read一种用于实验设计的方法,可以通过随机分配处理组来减少实验中的.table("exposure_data.txt", header=TRUE) outcome_data <- read.table("outcome_data.txt", header=TRUE) # 进行孟混杂因素。下面是一个使用R语言进行多变量孟德尔随机化的代码示例:\n\```R\# 安装并加载“randomizR”包\ins.packges(\randomizR\")\ibrary德尔随机化分析 mr_results <- mr_egger(exposure_data, outcome_data) # 查看结果 summary(mr(randomizR)\n\# 创建一个包含3个处理组和2个因素的数据框\f <- .fram(\ group_results) ``` = (\A\", \B\", \C\"),\ factor1 = (1, 2, 3),\ factor2 = 需要注意的是,输入的数据必须符合一定的格式要求,具体可以参考TwoSampleMR包的文档。此外, (\X\", \Y\", \Z\")\)\n\# 进行多变量孟德尔随机化\randomiz(df, str还有其他一些孟德尔随机化的R包,例如MendelianRandomization和TwoSampleMRGUI等, = \factor1\", block = \factor2\", s = 123)\```可以根据具体需求选择使用。 \n\在这个示例中,我们使用了R语言中的“randomizR”包来进行多变量孟德尔随机化。首先,我们创建了一个包含3个处理组和2个因素的数据框。然后,我们使用“randomiz”函数进行随机化,其中“str”参数指定了分层因素,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值