tina的博客

Poor writing is better than good memory! 专为与博主一样的小白准备~~~

caffe小问题(2):softmaxWithLoss

caffe中的softmaxWithLoss其实是:
softmaxWithLoss = Multinomial Logistic Loss Layer + Softmax Layer

其中:
Multinomial Logistic Loss Layer 即为交叉熵代价函数
Softmax Layer其实就是指softmax function(全连接那一步在它前面的fc中实现)

示意图如下:
这里写图片描述

应该注意,这里的Softmax Layer与机器学习中提到的softmax regression有一个小小的不同:它没有将前面的全连接层考虑在内,也就是说,它将softmax regression进行了分解:

softmax regression = 全连接层 + softmax layer (即softmax function)


另外,softmax function那个过程,按照如下方式绘制展示可能会更加明白
这里写图片描述

阅读更多
版权声明:本文为博主原创文章,如需转载,请注明出处:http://blog.csdn.net/tina_ttl https://blog.csdn.net/tina_ttl/article/details/51556984
文章标签: caffe 代价函数
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭