数字信号处理学习笔记[3] 滤波与褶积,Z变换

3 滤波与褶积,Z变换

3.1 连续信号的滤波和褶积

  1. Q: 卷积(褶积)和空间不变(平移对称性)有何联系?
    A: 提示(举例):位置0影响位置1的程度和1影响2的、2影响3的程度是相同的(并以此类推),这就是空间不变或平移对称性。
    很多物理规律比如万有引力定律等就具有此性质。
    那么考虑0 1 2三个数构成整体,分别对5 6 7三个数的影响,就出现卷积。
    这里还能直观看出卷积中“减号”的物理意义。比如说0对5是“间隔5”的影响,1对5是“间隔4”的影响,等等。0=5-5,1=5-4.
    注:根据实际意义不同,空间不变在实际中可能意义是时不变
  2. Q: 考察公式 ∬ X ( f ) h ( τ ) e i 2 π f ( t − τ ) d τ d f \iint X(f) h(\tau)e^{i2\pi f(t-\tau)}d\tau df X(f)h(τ)ei2πf(tτ)dτdf,两种积分顺序分别得到什么?
    A: 如果先对 τ \tau τ积分,则第一步得到 ∫ X ( f ) H ( f ) e i 2 π f t d f \int X(f)H(f)e^{i2\pi ft}df X(f)H(f)ei2πftdf,这就是频谱为 X ( f ) H ( f ) X(f)H(f) X(f)H(f)的信号。
    如果先对 f f f积分,则第一步得到 ∫ h ( τ ) x ( t − τ ) d τ \int h(\tau)x(t-\tau)d\tau h(τ)x(tτ)dτ,这就是卷积结果。
    也就是 y ( t ) = x ( t ) ∗ h ( t ) , Y ( f ) = X ( f ) H ( f ) y(t)=x(t)*h(t),Y(f)=X(f)H(f) y(t)=x(t)h(t),Y(f)=X(f)H(f).
  3. Q: 如何求积分信号 y ( t ) = ∫ − t 0 t 0 x ( t − τ ) d τ y(t)=\int_{-t_0}^{t_0}x(t-\tau)d\tau y(t)=t0t0x(tτ)dτ的频谱?
    A: 提示:相当于时域和方波卷积。

3.2 离散信号的滤波和褶积

  1. Q: 什么时候对连续信号的滤波可以通过对离散信号的滤波实现?
    A: 连续信号 x ( t ) x(t) x(t),连续滤波因子(注:或称滤波器时间函数、脉冲响应函数) h ( t ) h(t) h(t)都具有截频 f c f_c fc,且 Δ < 1 / 2 f c \Delta<1/2f_c Δ<1/2fc.
    此时在待考察区间内, X ( f ) = X Δ ( f ) , H ( f ) = H Δ ( f ) X(f)=X_\Delta(f),H(f)=H_\Delta(f) X(f)=XΔ(f),H(f)=HΔ(f),等等。故可以这么做。
  2. Q: 对离散信号情况,考察类似上一节1.的公式及其推论。
    A: 待考察的公式是: ∫ − 1 / 2 Δ 1 / 2 Δ X Δ ( f ) Δ ∑ m h ( m Δ ) e − i 2 π m f Δ e i 2 π n f Δ d f \int_{-1/2\Delta}^{1/2\Delta} X_\Delta (f)\Delta\sum_m h(m\Delta)e^{-i2\pi mf\Delta}e^{i2\pi nf\Delta}df 1/2Δ1/2ΔXΔ(f)Δmh(mΔ)ei2πmfΔei2πnfΔdf. 推论即 y ( n Δ ) = x ( n Δ ) ∗ h ( n Δ ) = Δ ∑ h ( m Δ ) x ( ( n − m ) Δ ) , Y Δ ( f ) = X Δ ( f ) H Δ ( f ) y(n\Delta)=x(n\Delta)*h(n\Delta)=\Delta\sum h(m\Delta)x((n-m)\Delta),Y_\Delta(f)=X_\Delta(f)H_\Delta(f) y(nΔ)=x(nΔ)h(nΔ)=Δh(mΔ)x((nm)Δ),YΔ(f)=XΔ(f)HΔ(f).
    注:上式得到的是 y ( n Δ ) y(n\Delta) y(nΔ),而不是傅里叶展开的第 n n n项系数。后者是前者的 Δ \Delta Δ。实际上,我们也可以考察傅里叶展开系数,即 Δ y ( n Δ ) = ∑ Δ h ( m Δ ) Δ x ( ( n − m ) Δ ) \Delta y(n\Delta)=\sum \Delta h(m\Delta)\Delta x((n-m)\Delta) Δy(nΔ)=Δh(mΔ)Δx((nm)Δ). 这种考察方式更容易记忆,也就是每一个 y ( ⋅ ) , x ( ⋅ ) , h ( ⋅ ) y(\cdot),x(\cdot),h(\cdot) y(),x(),h()都要乘以 Δ \Delta Δ.
    注:此处由于积分限 [ − 1 / 2 Δ , 1 / 2 Δ ] [-1/2\Delta,1/2\Delta] [1/2Δ,1/2Δ],所以 X Δ ( f ) X_\Delta(f) XΔ(f)其实也是某个一般(非奇异)连续信号的频谱。故这个公式中体现的离散卷积其实可以看成一个奇异信号和另一个一般连续信号的卷积,是连续卷积的特殊情况。(回忆这里的用卷积考察抽样定理的题1.)
  3. Q: 画图展现实际应用中对两有限长序列作卷积,并指出可能存在的实际问题。
    A: 考虑两线段AB(左边是A)和CD(左边是C),把CD折过来变成DC,然后C对齐A,接着不断向右平移,直至D对齐B为止。
    注意,在此过程中,不妨设CD线段较短,我们发现开头和结尾的若干步中会出现DC线段不被AB完全覆盖的情况,这时可能导致边缘效应等。(即:那些DC没有被AB覆盖到的地方,你怎么办?补零?周期延拓?)

3.3 信号的能谱与能量等式,功率谱与平均功率等式

  1. Q: 对于信号相乘积分公式, ∫ x ( t ) y ( t ) d t = ∫ X ( − f ) Y ( f ) d f \int x(t)y(t)dt=\int X(-f)Y(f)df x(t)y(t)dt=X(f)Y(f)df ∫ x ( t ) y ˉ ( t ) d t = ∫ X ( f ) Y ˉ ( f ) d f \int x(t)\bar y(t)dt=\int X(f)\bar Y(f)df x(t)yˉ(t)dt=X(f)Yˉ(f)df的推导有什么异同?
    A: 相同点:都是用傅里叶变换的一个方向搞出 e − ⋯ e^{-\cdots} e因子,再用另一个方向把这个因子“去掉”
    不同点:由于傅里叶正负变换相差负号,所以这里需要一定调整才能直接用“另一个方向去掉因子”。具体地,前者是直接变号,后者是利用共轭把 e − ⋯ e^{-\cdots} e变成 e + ⋯ e^{+\cdots} e+. 后者在处理实信号时更加方便。
  2. Q: 对于0.,考察两个相同的信号 x
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值