TensoRF: Tensorial Radiance Fields
TensoRF是ECCV2022一个非常有特色的工作。作者在三维场景表示中引入张量分解的技术,将4D张量分解成多个低秩的张量分量,实现更好的重建质量、更快的重建速度、更小的模型体积。
一、论文想法
TensoRF并没有采用像原始NeRF一样纯粹的隐式表示方法,更像是一种显示+隐式结合表示的方法,将场景建模为一个四维的张量,张量中的每一项代表一个体素,体素内包含了体积密度和多维的特征信息。

论文的中心思想是,使用张量分解技术,将4D张量分解成多个低秩的张量分量,实际处理时不用建模出这个4D张量,而用一系列1D向量、2D矩阵表示,从而降低显存消耗,提高运算速度。
二、张量分解-数学原理
外积(outer product)是线性代数中的一类重要运算,对于n维和m维的两个向量,其外积定义为一个n × m的矩阵。即,由u中的每个元素和v中的每个元素相乘得到的m × n阶矩阵A:

例如,当m=4, n=3时,有:

如果一个张量可以写成N个向量的外积,这个张量就是秩一张量。

其中张量中的每一个元素为:

TensoRF通过引入张量分解技术,将4D辐射场表示为低秩张量分量,提升重建质量和速度,同时减少模型体积。论文结合显示和隐式表示,使用VM分解处理体密度和颜色特征,实验中在Lego数据集上展示了高效建模的效果。
最低0.47元/天 解锁文章
1235

被折叠的 条评论
为什么被折叠?



