GPS从入门到放弃(六) — 开普勒轨道参数
开普勒轨道参数是用于描述卫星轨道的,GPS卫星的无摄椭圆轨道运动就是用开普勒轨道参数来描述。参考GPS导航电文,电文中的星历和历书都是用开普勒轨道参数来描述的。
一套开普勒轨道参数包含6个参数:轨道升交点赤经、轨道倾角、近地点角距、长半径、偏心率和真近点角。
- 轨道升交点赤经 Ω 0 \Omega_0 Ω0 (Longitude of Ascending Node of Orbit Plane)
- 轨道倾角 i 0 i_0 i0 (Inclination Angle)
- 近地点角距 ω \omega ω (Argument of Perigee)
- 长半径 a a a (Semi-Major Axis of Orbit)
- 偏心率 e e e (Eccentricity)
- 真近点角 ν \nu ν (True Anomaly)
要想确定卫星的位置,首先要确定卫星运行轨道所在平面的位置。卫星轨道平面通过地心,与赤道面相交,其夹角就是轨道倾角。卫星轨道在轨道平面内,卫星沿着轨道由南向北运行时与赤道面的交点称为卫星赤道升交点,简称升交点。此升交点在赤道面内与春分点对地心的夹角即为轨道升交点赤经。有了轨道倾角和轨道升交点赤经,就可以确定卫星轨道平面相对赤道面的位置。
轨道平面确定后,需要确定轨道椭圆。近地点角距用于确定椭圆方位,它是近地点在轨道平面内与升交点相对地心的夹角,确定了轨道椭圆长轴的方向。再加上长半径和偏心率,椭圆在轨道平面内的位置就确定下来了。
最后一个参数真近点角用于确定卫星在轨道椭圆上的相对位置,它定义为卫星当前位置在轨道平面内与近地点相对地心的夹角。
于是通过这一套开普勒轨道参数,卫星相对赤道的空间位置就确定了。
对于一颗无摄状态下运行的卫星来说,这一套开普勒参数除了真近点角以外都是常数,而真近点角是时间的函数,且和时间的关系比较复杂。于是GPS卫星星历并不直接给出真近点角 ν \nu ν