捷联惯导系统学习7.1(捷联惯导粗对准 )

本文详细介绍了惯性导航系统的初始对准方法,包括双矢量定姿、多矢量定姿和静基座状态下的粗对准。在静态条件下,利用重力矢量和地球自转角速度来估算姿态矩阵,通过加速度计和陀螺仪的测量值进行失准角计算。同时,讨论了间接粗对准方法,通过积分加速度计输出和重力矢量关系得到最终对准矩阵。文章还探讨了误差分析和抗扰能力,为实际应用提供了理论基础。
摘要由CSDN通过智能技术生成

初始对准:确定导航参数姿态、方位、速度、位置的初始值,方位的初始化是最难的。

单独的惯导难以长时间维持高精度定位导航,需要与其他方式综合。

捷联惯导粗对准

初始对准具体就是确定导航参考坐标系的一个过程,寻找导航坐标系(一般为东北天坐标系)与载体坐标系之间的对应关系。
双矢量定姿
方法一

  1. 已知两个不共线的矢量 V 1 , V 2 V_1,V_2 V1,V2,在坐标r(导航坐标系)系投影为 V 1 r , V 2 r V^r_1,V_2^r V1r,V2r,b系(载体坐标系)下的投影为 V 1 b , V 2 b V_1^b,V^b_2 V1b,V2b,通过两个投影求解b系与r系之间关系,称为双矢量定姿。
    求解:即两个坐标系之间的转换关系为 C b r C^r_b Cbr

  2. 存在:
    V 1 r = C b r V 1 b V 2 r = C b r V 2 b V_1^r=C_b^rV^b_1 \\V_2^r=C_b^rV_2^b V1r=CbrV1bV2r=CbrV2b

  3. 构造:
    V 1 r × V 2 r = ( C b r V 1 b ) × ( C b r V 2 b ) = C b r ( V 1 b × V 2 b ) V^r_1×V^r_2=(C_b^rV^b_1)×(C_b^rV_2^b)=C_b^r(V_1^b×V_2^b) V1r×V2r=(CbrV1b)×(CbrV2b)=Cbr(V1b×V2b)

  4. 得到矩阵方程:
    [ V 1 r V 2 r V 1 r × V 2 r ] = C b r [ V 1 b V 2 b V 1 b × V 2 b ] \left[\begin{matrix} V_1^r&V^r_2&V_1^r×V_2^r\\ \end{matrix}\right]=C_b^r\left[\begin{matrix} V_1^b&V^b_2&V_1^b×V_2^b\\ \end{matrix}\right] [V1rV2rV1r×V2r]=Cbr[V1bV2bV1b×V2b]

  5. 得到 C b r C_b^r Cbr
    C b r = [ V 1 r V 2 r V 1 r × V 2 r ] [ V 1 b V 2 b V 1 b × V 2 b ] − 1 C^r_b=\left[\begin{matrix} V_1^r&V^r_2&V_1^r×V_2^r\\ \end{matrix}\right]\left[\begin{matrix} V_1^b&V^b_2&V_1^b×V_2^b\\ \end{matrix}\right]^{-1} Cbr=[V1rV2rV1r×V2r][V1bV2bV1b×V2b]1

  6. 因为 C b r C_b^r Cbr是单位正交矩阵, C b r = ( C b r ) − T C^r_b=(C_b^r)^{-T} Cbr=(Cbr)T再得到:
    C b r = [ ( V 1 r ) T ( V 2 r ) T ( V 1 r × V 2 r ) T ] − 1 [ V 1 r V 2 r V 1 r × V 2 r ] C_b^r=\left[\begin{matrix} (V_1^r)^T\\(V^r_2)^T\\(V_1^r×V_2^r)^T\\ \end{matrix}\right]^{-1}\left[\begin{matrix}V_1^r\\V^r_2\\V_1^r×V_2^r\\ \end{matrix}\right] Cbr=(V1r)T(V2r)T(V1r×V2r)T1V1rV2rV1r×V2r

方法二
因为矢量误差往往包含模值误差和方向误差,方法一求取的模值不能严格满足单位正交化,方法2在此基础上,进行了修改。

  1. 已知测量得到了两个矢量 V ~ 1 b , V ~ 2 b \tilde V_1^b,\tilde V_2^b V~1b,V~2b,两个 V ~ 1 r , V ~ 2 r \tilde V_1^r,\tilde V_2^r V~1r,V~2r

  2. V ~ 1 b , V ~ 2 b \tilde V_1^b,\tilde V_2^b V~1b,V~2b求解三个单位正交矢量,(必定两两正交) v 1 = V ~ 1 b ∣ V ~ 1 b ∣ ; v 2 = V ~ 1 b × V ~ 2 b ∣ V ~ 1 b × V ~ 2 b ∣ ; v 3 = V ~ 1 b × V ~ 2 b × V ~ 1 b ∣ V ~ 1 b × V ~ 2 b × V ~ 1 b ∣ v_1=\frac{\tilde V_1^b}{|\tilde V_1^b|};v_2=\frac{\tilde V_1^b×\tilde V_2^b}{|\tilde V_1^b×\tilde V_2^b|};v_3=\frac{\tilde V_1^b×\tilde V_2^b×\tilde V_1^b}{|\tilde V_1^b×\tilde V_2^b×\tilde V_1^b|} v1=V~1bV~1b;v2=V~1b×V~2bV~1b×V~2b;v3=V~1b×V~2b×V~1bV~1b×V~2b×V~1b

  3. V ~ 1 r , V ~ 2 r \tilde V_1^r,\tilde V_2^r V~1r,V~2r构造三个正交单位矢量:
    u 1 = V ~ 1 r ∣ V ~ 1 r ∣ ; u 2 = V ~ 1 r × V ~ 2 r ∣ V ~ 1 r × V ~ 2 r ∣ ; u 3 = V ~ 1 b × V ~ 2 r × V ~ 1 r ∣ V ~ 1 r × V ~ 2 r × V ~ 1 r ∣ u_1=\frac{\tilde V_1^r}{|\tilde V_1^r|};u_2=\frac{\tilde V_1^r×\tilde V_2^r}{|\tilde V_1^r×\tilde V_2^r|};u_3=\frac{\tilde V_1^b×\tilde V_2^r×\tilde V_1^r}{|\tilde V_1^r×\tilde V_2^r×\tilde V_1^r|} u1=V~1rV~1r;u2=V~1r×V~2rV~1r×V~2r;u3=V~1r×V~2r×V~1rV~1b×V~2r×V~1r

  4. 构造单位阵求解 C b r C^r_b Cbr
    C b r = [ u 1 u 2 u 3 ] − 1 [ v 1 v 2 v 3 ] = [ u 1 u 2 u 3 ] [ v 1 v 2 v 3 ] C^r_b=\left[\begin{matrix}u_1\\u_2\\u_3\\ \end{matrix}\right]^{-1}\left[\begin{matrix}v_1\\v_2\\v_3\\ \end{matrix}\right]=\left[\begin{matrix}u_1&u_2&u_3\\ \end{matrix}\right]\left[\begin{matrix}v_1\\v_2\\v_3\\ \end{matrix}\right] Cbr=u1u2u31v1v2v3=[u1u2u3]v1v2v3

多矢量定姿
当有 m ( m > 2 ) m(m>2) m(m>2)个不共面的矢量,在 b b b系和 r r r系对这些矢量进行测量,由于误差存在,可以近似满足如下关系:
V ~ i r ≈ C b r V ~ i b ( i = 1 , 2 , . . . , m ) \tilde V^r_i \approx C^r_b \tilde V^b_i(i=1,2,...,m) V~irCbrV~ib(i=1,2,...,m)

  1. 这里求解变换矩阵变为了最优问题,指标函数为:
    J ∗ ( C b r ) = 1 2 ∑ i = 1 m w i ∣ V ~ i r − C b r V ~ i b ∣ 2 = m i n ∑ i = 1 m w i = 1 , 加 权 平 均 时 w i = 1 或 w i = 1 / m J^*(C^r_b)=\frac{1}{2}\sum^m_{i=1}w_i|\tilde V^r_i-C^r_b\tilde V^b_i|^2=min\\ \sum^m_{i=1}w_i=1,加权平均时w_i=1或w_i=1/m J(Cbr)=21i=1mwiV~irCbrV~ib2=mini=1mwi=1,wi=1wi=1/m

  2. ∣ V ~ i r − C b r V ~ i b ∣ 2 |\tilde V^r_i-C^r_b\tilde V^b_i|^2 V~irCbrV~ib2:
    ∣ V ~ i r − C b r V ~ i b ∣ 2 = ( V ~ i r − C b r V ~ i b ) T ( V ~ i r − C b r V ~ i b ) = [ ( V ~ i r ) T − ( V ~ i b ) T ( C b r ) T ] ( V ~ i r − C b r V ~ i b ) = ∣ V ~ i r ∣ 2 + ∣ V ~ i b ∣ 2 − 2 ( V ~ i r ) C b r V ~ i b |\tilde V^r_i-C^r_b\tilde V^b_i|^2=(\tilde V^r_i-C^r_b\tilde V^b_i)^T(\tilde V^r_i-C^r_b\tilde V^b_i) \\ =[(\tilde V^r_i)^T-(\tilde V^b_i)^T(C^r_b)^T](\tilde V^r_i-C^r_b\tilde V^b_i) \\ =|\tilde V^r_i|^2+|\tilde V^b_i|^2-2(\tilde V^r_i)C^r_b\tilde V^b_i V~irCbrV~ib2=(V~irCbrV~ib)T(V~irCbrV~ib)=[(V~ir)T(V~ib)T(Cbr)T](V~irCbrV~ib)=V~ir2+V~ib22(V~ir)CbrV~ib

  3. 带入得到:
    J ∗ ( C b r ) = 1 2 ∑ i = 1 m w i ∣ V ~ i r − C b r V ~ i b ∣ 2 = 1 2 ∑ i = 1 m w i ( ∣ V ~ i r ∣ 2 + ∣ V ~ i b ∣ 2 ) − ∑ i = 1 m w i ( V ~ i r ) T C b r V ~ i b J^*(C^r_b)=\frac{1}{2}\sum^m_{i=1}w_i|\tilde V^r_i-C^r_b\tilde V^b_i|^2=\frac{1}{2}\sum^m_{i=1}w_i(|\tilde V^r_i|^2+|\tilde V_i^b|^2)-\sum^m_{i=1}w_i(\tilde V^r_i)^TC^r_b\tilde V^b_i J(Cbr)=21i=1mwiV~irCbrV~ib2=21i=1mwi(V~ir2+V~ib2)i=1mwi(V~ir)TCbrV~ib

  4. 想要 J ∗ ( C b r ) J^*(C^r_b) J(Cbr)取最小,即 ∑ i = 1 m w i ( V ~ i r ) T C b r V ~ i b \sum^m_{i=1}w_i(\tilde V^r_i)^TC^r_b\tilde V^b_i i=1mwi(V~ir)TCbrV~ib取最大值
    令 J ( C b r ) = { ∑ i = 1 m w i ( V ~ i r ) T C b r V ~ i b } m a x 令J(C^r_b)=\{\sum^m_{i=1}w_i(\tilde V^r_i)^TC^r_b\tilde V^b_i\}_{max} J(Cbr)={i=1mwi(V~ir)TCbrV~ib}max

  5. 仅以化简:
    J ( C b r ) = { ∑ i = 1 m w i ( V ~ i r ) T C b r V ~ i b } m a x = t r [ [ w 1 ( V ~ 1 r ) T w 2 ( V ~ 2 r ) T . . . w m ( V ~ m r ) T ] C b r ] [ V ~ 1 b V ~ 2 b . . . V ~ m b ] ] = t r ( C b r ∑ i = 1 m w i C ~ i b ( C ~ i b ) T ) = t r ( C b r A T ) J(C^r_b)=\{\sum^m_{i=1}w_i(\tilde V^r_i)^TC^r_b\tilde V^b_i\}_{max}\\ =tr[\left[\begin{matrix}w_1(\tilde V_1^r)^T\\w_2(\tilde V_2^r)^T\\...\\w_m(\tilde V_m^r)^T \end{matrix}\right]C^r_b]\left[\begin{matrix}\tilde V_1^b&\tilde V_2^b&...&\tilde V_m^b \end{matrix}\right]]\\ =tr(C^r_b\sum^m_{i=1}w_i\tilde C_i^b(\tilde C_i^b)^T)\\ =tr(C^r_b A^T) J(Cbr)={i=1mwi(V~ir)TCbrV~ib}max=tr[w1(V~1r)Tw2(V~2r)T...wm(V~mr)TCbr][V~1bV~2b...V~mb]]=tr(Cbri=1mwiC~ib(C~ib)T)=tr(CbrAT)

  6. 得到 A T = ∑ i = 1 m w i C ~ i b ( C ~ i b ) T A^T=\sum^m_{i=1}w_i\tilde C_i^b(\tilde C_i^b)^T AT=i=1mwiC~ib(C~ib)T

  7. 对A进行奇异值分解即: A = U D V T A=UDV^T A=UDVT

  8. 得到 C ^ b r = U V T \hat C^r_b=UV^T C^br=UVT

粗对准实现

初始对准时运载体一般实在精致条件下进行的,重力矢量和地球自转角速度矢量 w i e w_{ie} wie是已知的,分别如下:
g n = [ 0 0 − g ] , w i e n = [ 0 w i e c o s L w i e s i n L ] = [ 0 w N w U ] g^n=\left[\begin{matrix} 0\\0\\-g \end{matrix}\right],w^n_{ie}=\left[\begin{matrix} 0\\w_{ie}cosL\\w_{ie}sinL \end{matrix}\right]=\left[\begin{matrix} 0\\w_N\\w_U \end{matrix}\right] gn=00g,wien=0wiecosLwiesinL=0wNwU

  1. 地球角速度测量关系和比力方程
    w i b b : b 系 ( 载 体 坐 标 系 ) 与 i 系 ( 惯 性 坐 标 系 ) 之 间 的 旋 转 , 在 b 系 下 的 表 示 w^b_{ib}:b系(载体坐标系)与i系(惯性坐标系)之间的旋转,在b系下的表示 wibb:bib
    w i b n : n 系 ( 惯 导 坐 标 系 ) 与 i 系 ( 惯 性 坐 标 系 ) 之 间 的 旋 转 ( 自 转 ) 在 b 系 下 的 表 示 w^n_{ib}:n系(惯导坐标系)与i系(惯性坐标系)之间的旋转(自转)在b系下的表示 wibnnib
    w e n n : n 系 ( 惯 导 坐 标 系 ) 与 e 系 ( 地 球 坐 标 系 ) 之 间 的 夹 角 在 n 系 下 的 表 示 w^n_{en}:n系(惯导坐标系)与e系(地球坐标系)之间的夹角在n系下的表示 wenn:nen
    w n b n : 基 静 坐 晃 动 干 扰 角 速 度 w^n_{nb}:基静坐晃动干扰角速度 wnbn:
    v ˙ n : 寂 静 做 晃 动 角 速 度 \dot v^n:寂静做晃动角速度 v˙n:
    f s f b : 比 力 加 速 度 测 得 数 据 f^b_{sf}:比力 加速度测得数据 fsfb:
    C b n w i b b = w i b n = w i e n + w e n n + w n b n v ˙ n = C b n f s f b − ( 2 w i e n + w e n n ) × v n + g n C^n_bw^b_{ib}=w^n_{ib}=w_{ie}^n+w^n_{en}+w^n_{nb}\\ \dot v^n=C^n_bf^b_{sf}-(2w^n_{ie}+w^n_{en})×v^n+g^n Cbnwibb=wibn=wien+wenn+wnbnv˙n=Cbnfsfb(2wien+wenn)×vn+gn

  2. 静基座状态下 ( 2 w i e n + w e n n ) × v n (2w^n_{ie}+w^n_{en})×v^n (2wien+wenn)×vn w e n n w^n_{en} wenn可以忽略不计,再加入陀螺仪量测误差 δ w i b b \delta w^b_{ib} δwibb和加速度计测量误差 δ f s f b \delta f^b_{sf} δfsfb,得到:
    C b n ( w ~ i b b − δ w i b b ) − w n b n = w i e n C b n ( f ~ s f b − δ f s f b ) − v ˙ n = − g n C^n_b(\tilde w^b_{ib}-\delta w^b_{ib})-w^n_{nb}=w^n_{ie} \\ C^n_b(\tilde f^b_{sf}-\delta f^b_{sf})-\dot v^n=-g^n Cbn(w~ibbδwibb)wnbn=wienCbn(f~sfbδfsfb)v˙n=gn

  3. 可以简写为:
    ξ ‾ n = C b b w ~ i b b + w n b n \overline \xi^n=C^b_b\tilde w^b_{ib}+w^n_{nb} ξn=Cbbw~ibb+wnbn
    ▽ ‾ n = C b n δ f s f b + v ˙ n \overline\bigtriangledown^n=C^n_b\delta f^b_{sf}+\dot v^n n=Cbnδfsfb+v˙n
    C b n w ~ i b b − ξ ‾ n = w i e n C b n f ~ s f b − ▽ ‾ n = − g n C^n_b\tilde w^b_{ib}-\overline \xi^n=w^n_{ie}\\ C^n_b \tilde f^b_{sf}-\overline\bigtriangledown^n=-g^n Cbnw~ibbξn=wienCbnf~sfbn=gn

  4. 当测量误差远小于有用信号时,即 ∣ ξ ‾ n ∣ < 1 10 ∣ w i e n ∣ = w i e 10 |\overline \xi^n|<\frac{1}{10}|w^n_{ie}|=\frac{w_{ie}}{10} ξn<101wien=10wie ∣ ▽ ‾ n ∣ < ∣ − g n ∣ 100 = g 100 |\overline\bigtriangledown^n|<\frac{|-g^n|}{100}=\frac{g}{100} n<100gn=100g,上式可以近似估计为:
    C ~ b n w ~ i b b = w i e n C ~ b n f ~ s f b = − g n \tilde C^n_b \tilde w^b_{ib}=w^n_{ie}\\ \tilde C^n_b \tilde f^b_{sf}=-g^n C~bnw~ibb=wienC~bnf~sfb=gn

  5. 在一般情况下,线运动干扰相对误差小于角运动,参考双矢量标定,以 ( − g n ) (-g^n) (gn)作为主参考矢量,可以得到姿态估计阵为:
    C ^ b n = [ ( − g n ) ∣ ( − g n ) ∣ ( − g n ) × w i e n ∣ ( − g n ) × w i e n ∣ ( − g n ) × w i e n × ( − g n ) ∣ ( − g n ) × w i e n × ( − g n ) ∣ ] × [ ( f ~ s f n ) T ∣ f ~ s f n ∣ f ~ s f n × w ~ i b b ∣ f ~ s f n × w ~ i b b ∣ ( f ~ s f n × w ~ i b b × f ~ s f n ) ∣ f ~ s f n × w ~ i b b × f ~ s f n ∣ ] \hat C_b^n=\left[\begin{matrix} \frac{(-g^n)}{|(-g^n)|}&\frac{(-g^n)×w^n_{ie}}{|(-g^n)×w^n_{ie}|}&\frac{(-g^n)×w^n_{ie}×(-g^n)}{|(-g^n)×w^n_{ie}×(-g^n)|}\\ \end{matrix}\right]×\left[\begin{matrix} \frac{(\tilde f^n_{sf})^T}{|\tilde f^n_{sf}|}\\\frac{\tilde f^n_{sf}×\tilde w^b_{ib}}{|\tilde f^n_{sf}×\tilde w^b_{ib}|}\\ \frac{(\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf})}{|\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf}|}\\ \end{matrix}\right] C^bn=[(gn)(gn)(gn)×wien(gn)×wien(gn)×wien×(gn)(gn)×wien×(gn)]×f~sfn(f~sfn)Tf~sfn×w~ibbf~sfn×w~ibbf~sfn×w~ibb×f~sfn(f~sfn×w~ibb×f~sfn)

  6. g n , w i e n g^n,w^n_{ie} gn,wien带入,求得 C ^ b n \hat C^n_b C^bn
    C ^ b n = [ 0 − 1 0 0 0 1 1 0 0 ] [ ( f ~ s f n ) T ∣ f ~ s f n ∣ f ~ s f n × w ~ i b b ∣ f ~ s f n × w ~ i b b ∣ ( f ~ s f n × w ~ i b b × f ~ s f n ) ∣ f ~ s f n × w ~ i b b × f ~ s f n ∣ ] = [ − ( f ~ s f n × w ~ i b b ) T ∣ f ~ s f n × w ~ i b b ∣ ( f ~ s f n × w ~ i b b × f ~ s f n ) T ∣ f ~ s f n × w ~ i b b × f ~ s f n ∣ ( f ~ s f n ) T ∣ f ~ s f n ∣ ] \hat C^n_b=\left[\begin{matrix} 0&-1&0\\0&0&1\\1&0&0 \end{matrix}\right]\left[\begin{matrix} \frac{(\tilde f^n_{sf})^T}{|\tilde f^n_{sf}|}\\\frac{\tilde f^n_{sf}×\tilde w^b_{ib}}{|\tilde f^n_{sf}×\tilde w^b_{ib}|}\\ \frac{(\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf})}{|\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf}|}\\ \end{matrix}\right] =\left[\begin{matrix} -\frac{(\tilde f^n_{sf}×\tilde w^b_{ib})^T}{|\tilde f^n_{sf}×\tilde w^b_{ib}|}\\ \frac{(\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf})^T}{|\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf}|}\\ \frac{(\tilde f^n_{sf})^T}{|\tilde f^n_{sf}|}\\ \end{matrix}\right] C^bn=001100010f~sfn(f~sfn)Tf~sfn×w~ibbf~sfn×w~ibbf~sfn×w~ibb×f~sfn(f~sfn×w~ibb×f~sfn)=f~sfn×w~ibb(f~sfn×w~ibb)Tf~sfn×w~ibb×f~sfn(f~sfn×w~ibb×f~sfn)Tf~sfn(f~sfn)T

7.实际中: ∠ ( w ~ i b b , f ~ s f b ) ≈ π 2 − L \angle (\tilde w^b_{ib},\tilde f^b_{sf})\approx \frac{\pi}{2}-L (w~ibb,f~sfb)2πL
假设角增量为在 [ 0 , T ] [0,T] [0,T]时间内 Δ θ ( T ) \Delta \theta(T) Δθ(T)速度增量为 Δ V ( T ) \Delta V(T) ΔV(T),当 [ 0 , T ] [0,T] [0,T]时间内低频晃动小于 W i e / 10 W_{ie}/10 Wie/10且速度变化小于 g T / 100 gT/100 gT/100时能够得到一定经度的结果
w ~ i b b = w ‾ i b b = Δ θ ( T ) T , f ~ s f b = f ‾ s f b = Δ V ( T ) T \tilde w^b_{ib}=\overline w^b_{ib}=\frac{\Delta \theta(T)}{T},\tilde f^b_{sf}=\overline f^b_{sf}=\frac{\Delta V(T)}{T} w~ibb=wibb=TΔθ(T),f~sfb=fsfb=TΔV(T)

粗对准方法的误差分析
C ^ b n = [ 0 − 1 0 0 0 1 1 0 0 ] [ ( f ~ s f n ) T ∣ f ~ s f n ∣ f ~ s f n × w ~ i b b ∣ f ~ s f n × w ~ i b b ∣ ( f ~ s f n × w ~ i b b × f ~ s f n ) ∣ f ~ s f n × w ~ i b b × f ~ s f n ∣ ] = [ − ( f ~ s f n × w ~ i b b ) T ∣ f ~ s f n × w ~ i b b ∣ ( f ~ s f n × w ~ i b b × f ~ s f n ) T ∣ f ~ s f n × w ~ i b b × f ~ s f n ∣ ( f ~ s f n ) T ∣ f ~ s f n ∣ ] \hat C^n_b=\left[\begin{matrix} 0&-1&0\\0&0&1\\1&0&0 \end{matrix}\right]\left[\begin{matrix} \frac{(\tilde f^n_{sf})^T}{|\tilde f^n_{sf}|}\\\frac{\tilde f^n_{sf}×\tilde w^b_{ib}}{|\tilde f^n_{sf}×\tilde w^b_{ib}|}\\ \frac{(\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf})}{|\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf}|}\\ \end{matrix}\right] =\left[\begin{matrix} -\frac{(\tilde f^n_{sf}×\tilde w^b_{ib})^T}{|\tilde f^n_{sf}×\tilde w^b_{ib}|}\\ \frac{(\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf})^T}{|\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf}|}\\ \frac{(\tilde f^n_{sf})^T}{|\tilde f^n_{sf}|}\\ \end{matrix}\right] C^bn=001100010f~sfn(f~sfn)Tf~sfn×w~ibbf~sfn×w~ibbf~sfn×w~ibb×f~sfn(f~sfn×w~ibb×f~sfn)=f~sfn×w~ibb(f~sfn×w~ibb)Tf~sfn×w~ibb×f~sfn(f~sfn×w~ibb×f~sfn)Tf~sfn(f~sfn)T
上述分母可以近似为:
∣ f ~ s f n ) × w ~ i b b ∣ ≈ ∣ ( − g n ) × w i e n ∣ = g w i e c o s L = g w n |\tilde f^n_{sf})×\tilde w^b_{ib}| \approx |(-g^n)×w^n_{ie}|=gw_{ie}cosL=gw_n f~sfn)×w~ibb(gn)×wien=gwiecosL=gwn
∣ f ~ s f n × w ~ i b b × f ~ s f n ∣ ≈ ∣ ( − g n ) × w i e n × ( − g n ) ∣ = g 2 w N |\tilde f^n_{sf}×\tilde w^b_{ib}×\tilde f^n_{sf}| \approx|(-g^n)×w^n_{ie}×(-g^n)|=g^2w_N f~sfn×w~ibb×f~sfn(gn)×wien×(gn)=g2wN
∣ f ~ s f n ∣ ≈ ∣ ( − g n ) ∣ = g |\tilde f^n_{sf}|\approx |(-g^n)|=g f~sfn(gn)=g
C ^ b n \hat C^n_b C^bn忽略误差的高阶小量:
C ^ b n ≈ [ − [ ( f s f b + δ f s f b ) × ( w i b b + δ w i b b ) ] / ( g w N ) − [ ( f s f b + δ f s f b ) × ( w i b b + δ w i b b ) × ( f s f b + δ f s f b ) ] T / ( g 2 w N ) ( f s f b + δ f s f b ) T / g ] ≈ [ I + [ ∗ − δ w i b , E n / w N + δ f s f , E n t a n L / g ∗ ∗ ∗ ∗ δ f s f , E n / g δ f s f , N n / g ∗ ] ] C b n \hat C^n_b \approx \left[\begin{matrix} -[(f^b_{sf}+\delta f^b_{sf})×(w^b_{ib}+\delta w^b_{ib})]/(gw_N)\\ -[(f^b_{sf}+\delta f^b_{sf})×(w^b_{ib}+\delta w^b_{ib})×(f^b_{sf}+\delta f^b_{sf})]^T/(g^2w_N)\\ (f^b_{sf}+\delta f^b_{sf})^T/g \end{matrix}\right] \\ \approx [I+\left[\begin{matrix} *&-\delta w^n_{ib,E}/w_N+\delta f^n_{sf,E}tanL/g&*\\*&*&*\\\delta f^n_{sf,E}/g&\delta f^n_{sf,N}/g&* \end{matrix}\right]]C^n_b C^bn[(fsfb+δfsfb)×(wibb+δwibb)]/(gwN)[(fsfb+δfsfb)×(wibb+δwibb)×(fsfb+δfsfb)]T/(g2wN)(fsfb+δfsfb)T/g[I+δfsf,En/gδwib,En/wN+δfsf,EntanL/gδfsf,Nn/g]Cbn
又因为 C ^ b n = ( I − ϕ × ) C b n ( ϕ 为 失 准 角 ) \hat C^n_b=(I-\phi×)C^n_b(\phi为失准角) C^bn=(Iϕ×)Cbn(ϕ)
求得失准角为:
ϕ = [ − δ f s f , N n / g δ f s f , E n / g − δ w i b , E n / w N + δ f s f , E n t a n L / g ] ≈ [ − δ f s f , N n / g δ f s f , E n / g − δ w i b , E n / w N ] \phi=\left[\begin{matrix} -\delta f^n_{sf,N}/g\\\delta f^n_{sf,E}/g\\-\delta w^n_{ib,E}/w_N+\delta f^n_{sf,E}tanL/g \end{matrix}\right] \approx \left[\begin{matrix} -\delta f^n_{sf,N}/g\\\delta f^n_{sf,E}/g\\-\delta w^n_{ib,E}/w_N \end{matrix}\right] ϕ=δfsf,Nn/gδfsf,En/gδwib,En/wN+δfsf,EntanL/gδfsf,Nn/gδfsf,En/gδwib,En/wN
可以观察到失准角的主要无影响。

间接粗对准方法

与直接对准方法相比,短时间内抗扰能力弱,长时间(分重量级)间接粗对准方法更加准确
在这里插入图片描述

  1. 设:
    初始时刻载体惯性系 b 0 b_0 b0,与对准时刻载体惯性系重合
    初始时刻导航惯性系 n 0 n_0 n0,与对准时刻导航惯性系重合
    常值矩阵 C b 0 n 0 C^{n_0}_{b_0} Cb0n0 b 0 b_0 b0系与 n 0 n_0 n0系的方位关系

  2. 重力矢量,在 n 0 n_0 n0系的投影:
    g n = [ 0 0 − g ] T g^n=\left[\begin{matrix}0&0&-g\end{matrix}\right]^T gn=[00g]T
    g n 0 = C n n 0 g n C ˙ n n 0 = C n n 0 ( w n 0 n n × ) = C n n 0 w i e n × g^{n_0}=C_n^{n_0}g^n \\ \dot C^{n_0}_{n}=C^{n_0}_{n}(w^n_{n_0n}\times)=C_n^{n_0}{w^n_{ie}\times} gn0=Cnn0gnC˙nn0=Cnn0(wn0nn×)=Cnn0wien×

  3. 解得 C n n 0 = e i w i e n × = I + s i n w i e t w i e t ( t w i e n × ) + 1 − c o s w i e t ( w i e t ) 2 ( t w i e n × ) 2 = [ c o s w i e t − s i n w i e t s i n L s i n w i e t c o s L s i n w i e t s i n L 1 − ( 1 − c o s w i e t ) s i n 2 L ( 1 − c o s w i e t ) s i n L c o s L − s i n w i e t c o s L ( 1 − c o s w i e t ) s i n L c o s L 1 − ( 1 − c o s w i e t ) c o s 2 L ] C^{n_0}_n=e^{i w_{ie}^n\times}=I+\frac{sin{w_{ie}}t}{w_{ie}t}(tw^n_{ie}\times)+\frac{1-cosw_{ie}t}{(w_{ie}t)^2}(tw^n_{ie}\times)^2\\=\left[\begin{matrix} cosw_{ie}t&-sinw_{ie}tsinL&sinw_{ie}tcosL\\ sinw_{ie}tsinL&1-(1-cosw_{ie}t)sin^2L&(1-cosw_{ie}t)sinLcosL\\ -sinw_{ie}tcosL&(1-cosw_{ie}t)sinLcosL&1-(1-cosw_{ie}t)cos^2L\\ \end{matrix}\right] Cnn0=eiwien×=I+wietsinwiet(twien×)+(wiet)21coswiet(twien×)2=coswietsinwietsinLsinwietcosLsinwietsinL1(1coswiet)sin2L(1coswiet)sinLcosLsinwietcosL(1coswiet)sinLcosL1(1coswiet)cos2L

  4. 得到 g n 0 = − g [ s i n w i e t ( 1 − c o s w i e t ) ) s i n L c o s L 1 − ( 1 − c o s w i e t ) ) c o s 2 L ] g^{n_0}=-g\left[\begin{matrix} sinw_{ie}t\\ (1-cosw_{ie}t))sinLcosL\\ 1-(1-cosw_{ie}t))cos^2L\\ \end{matrix}\right] gn0=gsinwiet(1coswiet))sinLcosL1(1coswiet))cos2L

  5. 加速度计的比例输出在 b 0 b_0 b0系投影为:
    w i b b : 为 陀 螺 仪 测 量 值 C b b 0 ( 0 ) = I : 初 始 值 为 I , 其 他 时 刻 值 使 用 姿 态 更 新 算 法 ( 二 子 样 法 或 者 其 他 ) w^b_{ib}:为陀螺仪测量值\\ C_b^{b_0}(0)=I:初始值为I,其他时刻值使用姿态更新算法(二子样法或者其他) wibb:Cbb0(0)=I:I使姿
    f s f b 0 = C b b 0 f s f b C ˙ b b 0 = C b b 0 ( w b 0 b b × ) = C b b 0 ( w i b b × ) f^{b_0}_{sf}=C_b^{b_0} f^b_{sf}\\ \dot C_b^{b_0}=C_b^{b_0}(w^b_{b_0b}\times)=C_b^{b_0}(w^b_{ib}\times) fsfb0=Cbb0fsfbC˙bb0=Cbb0(wb0bb×)=Cbb0(wibb×)

  6. 得到加速度与加速度计比力测量之间关系:
    ▽ ‾ b 0 : 表 示 在 b 0 系 的 加 速 度 计 测 量 误 差 及 线 性 干 扰 \overline \bigtriangledown^{b_0}:表示在b_0系的加速度计测量误差及线性干扰 b0:b0线
    C b 0 n 0 ( C b b 0 f ~ s f b − ▽ ‾ b 0 ) = − g n 0 ▽ ‾ b 0 = C b b 0 δ f s f b + v ˙ b 0 C_{b_0}^{n_0}(C_b^{b_0}\tilde f^b_{sf}-\overline \bigtriangledown^{b_0})=-g^{n_0}\\ \overline \bigtriangledown^{b_0}=C_b^{b_0}\delta f^b_{sf}+\dot v^{b_0} Cb0n0(Cbb0f~sfbb0)=gn0b0=Cbb0δfsfb+v˙b0

  7. 在初始对准过程中进行定积分得到:
    { F ~ i b 0 = ∫ 0 t i C b b 0 f ~ s f b d t G i n 0 = − ∫ 0 t i g n 0 d t \begin{cases}\tilde F_i^{b_0}=\int_0^{t_i}C_{b}^{b_0}\tilde f_{sf}^bdt\\ G_i^{n_0}=-\int_0^{t_i}g^{n0}dt\\ \end{cases} {F~ib0=0tiCbb0f~sfbdtGin0=0tign0dt
    得到 G i n 0 = C b 0 b 0 F ~ i b 0 − ∫ 0 t i C b 0 n 0 ▽ ‾ b 0 d t G_i^{n_0}=C_{b0}^{b_0}\tilde F_i^{b_0}-\int_0^{t_i}C_{b_0}^{n_0}\overline \bigtriangledown^{b_0}dt Gin0=Cb0b0F~ib00tiCb0n0b0dt

  8. 使用双重矢量法对准:
    t 2 t_2 t2时间内结束对准: t 2 = 2 t 1 t_2=2t_1 t2=2t1最后得到:
    C ^ b 0 n 0 = [ G 1 n 0 ∣ G 1 n 0 ∣ G 1 n 0 × G 2 n 0 ∣ G 1 n 0 × G 2 n 0 ∣ G 1 n 0 × G 2 n 0 × G 1 n 0 ∣ G 1 n 0 × ] × [ ( F ~ 1 b 0 ) T ∣ F ~ 1 b 0 ∣ ( F ~ 1 b 0 × F ~ 2 b 0 ) T ∣ F ~ 1 b 0 × F ~ 2 b 0 ∣ ( F ~ 1 b 0 × F ~ 2 b 0 × F ~ 1 b 0 ) T ∣ F ~ 1 b 0 × F ~ 2 b 0 × F ~ 1 b 0 T ∣ ] \hat C^{n_0}_{b_0}=\left[\begin{matrix} \frac{G_1^{n_0}}{|G_1^{n_0}|}&\frac{G_1^{n_0}\times G_2^{n_0} }{|G_1^{n_0}\times G_2^{n_0} |}&\frac{G_1^{n_0}\times G_2^{n_0}\times G_1^{n_0} }{|G_1^{n_0}\times } \end{matrix}\right]\times\\ \left[\begin{matrix} \frac{(\tilde F_1^{b_0})^T}{|\tilde F_1^{b_0}|}\\ \frac{(\tilde F_1^{b_0} \times \tilde F_2^{b_0})^T}{|\tilde F_1^{b_0} \times \tilde F_2^{b_0}|}\\ \frac{(\tilde F_1^{b_0} \times \tilde F_2^{b_0}\times \tilde F_1^{b_0})^T}{|\tilde F_1^{b_0} \times \tilde F_2^{b_0}\times \tilde F_1^{b_0}T|} \end{matrix}\right] C^b0n0=[G1n0G1n0G1n0×G2n0G1n0×G2n0G1n0×G1n0×G2n0×G1n0]×F~1b0(F~1b0)TF~1b0×F~2b0(F~1b0×F~2b0)TF~1b0×F~2b0×F~1b0T(F~1b0×F~2b0×F~1b0)T

  9. 使用多重矢量法标定:
    A = − ∫ 0 t 2 g n 0 ( f ~ s f b 0 ) T d t A=-\int_0^{t_2}g^{n_0}(\tilde f_{sf}^{b_0})^Tdt A=0t2gn0(f~sfb0)Tdt
    再进行求解

  10. 得到最后对准时刻矩阵 C ^ b 0 n 0 \hat C^{n_0}_{b_0} C^b0n0
    C ˙ n n 0 = C n n 0 ( w n 0 n n × ) = C n n 0 w i e n × C ˙ b b 0 = C b b 0 ( w b 0 b b × ) = C b b 0 ( w i b b × ) \dot C^{n_0}_{n}=C^{n_0}_{n}(w^n_{n_0n}\times)=C_n^{n_0}{w^n_{ie}\times}\\ \dot C_b^{b_0}=C_b^{b_0}(w^b_{b_0b}\times)=C_b^{b_0}(w^b_{ib}\times) C˙nn0=Cnn0(wn0nn×)=Cnn0wien×C˙bb0=Cbb0(wb0bb×)=Cbb0(wibb×)
    C ^ b 0 n 0 = C n 0 n C ^ b 0 n 0 C b b 0 \hat C^{n_0}_{b_0}=C^n_{n0}\hat C_{b_0}^{n_0}C_b^{b_0} C^b0n0=Cn0nC^b0n0Cbb0

捷联惯导(Inertial Navigation System, INS)是一种通过测量加速度和角速度来计算对应的位置、姿态和速度的导航系统。而对准是指在开始导航之前,INS需要通过某种方法获得初始的位置和姿态信息。 Matlab是一个强大的科学计算软件,可以提供丰富的数学运算和图形显示功能。由于INS涉及到复杂的数学运算,使用Matlab进行INS的对准是非常方便和高效的。 在Matlab中,可以通过以下步骤来实现捷联惯导对准: 1. 数据准备:将INS的加速度计和陀螺仪的原始测量数据导入到Matlab中。 2. 数据预处理:对原始数据进行去噪、滤波和校准,以提高数据的准确性和稳定性。 3. 姿态解算:利用陀螺仪的测量数据,结合运动微分方程和四元数等方法,计算出INS的姿态信息,即航向、俯仰和横滚角。 4. 位置解算:根据加速度计的测量数据和姿态信息,利用运动微分方程和积分方法,计算出INS的位置信息。 5. 误差校正:通过与地面真实位置进行比较,校正INS的误差,包括漂移、偏差等。 6. 对准结果评估:对对准的结果进行评估,比较与真实数据的差异,判断INS是否满足要求。 7. 结果输出:将对准的结果进行可视化显示,并输出到相关的导航系统中,用于后续的导航过程。 总之,利用Matlab进行捷联惯导对准可以帮助提高导航系统的准确性和稳定性,减小误差,并为后续的导航过程提供良好的初始信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值