【图解】一维卷积conv1d

文章探讨了NLP中一维卷积(Conv1D)的应用,以及GLU层在神经网络中的作用,阐述了如何利用这些技术在文本处理中捕捉模式,并与二维卷积在图像识别中的应用进行了对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接看这个文章: NLP神经网络之一维卷积的处理【Conv1D】和GLU层_神经网络glu_子燕若水的博客-CSDN博客

 直接看这个文章: NLP神经网络之一维卷积的处理【Conv1D】和GLU层_神经网络glu_子燕若水的博客-CSDN博客 

 直接看这个文章: NLP神经网络之一维卷积的处理【Conv1D】和GLU层_神经网络glu_子燕若水的博客-CSDN博客

---------------------------------------------------------

 

简易的一维卷积

在下中,您可以看到执行的操作。左边的对象代表您的输入,中间的对象代表您的内核(大小为 (3,1)),右边的对象代表您的输出。

实际项目中的一维卷积

 
这种架构处理文本时要考虑的是一维 CNN (Conv1D)。它们所基于的原理类似于使用AutoKeras 进行图像分类和回归时看到的 2D CNN 。这些神经网络设法通过过滤器学习文本中的模式,就像它们在上一章中学习图像一样。

注意此时的卷积核在连线上进行应用,没有直接被画出

实际项目中的多维卷积

### Conv1D 一维卷积神经网络图解一维卷积神经网络Conv1D)中,输入通常是时间序列数据或其他形式的一维信号。与二维卷积不同的是,一维卷积只在一个方向上滑动滤波器来捕捉局部模式。 #### 输入形状 对于一维卷积来说,常见的输入张量形状为 `(batch_size, sequence_length, input_channels)` 或者在某些框架中也可以是 `(sequence_length, batch_size, input_channels)` 取决于具体实现方式[^1]。 #### 卷积过程 假设有一个长度为 `L` 的向量作为输入,并且应用了一个宽度为 `k` 的过滤器,则该过滤器会在整个输入序列上移动并计算加权和加上偏置项得到新的特征映射。每次移动的距离由步幅(`stride`)决定,默认情况下等于1,在这种设置下输出尺寸可以通过下面公式计算: \[ \text{output\_length} = (\text{input\_length}-\text{filter\_width})/\text{stride}+1 \] 当设置了填充(padding),则可以在不影响原始信息的情况下扩展边界以保持输出大小不变或接近原大小。 #### 图形解释 为了更好地理解这个概念,可以想象一条线代表输入的时间序列数据点,而一个小窗口沿着这条线上下滑过每一个位置执行乘积累加运算生成一个新的数值加入到最终的结果集中形成一个更短的新序列。每个这样的小窗口就相当于一个可训练的一维卷积核。 ```plaintext Input Sequence (Length L): [x0,x1,...,xi,...,x(L-1)] Filter/Kernel : [w0,w1,...wk] Stride : s Padding : p Output Sequence : [y0,y1,...ym] where m=(L-k+p*2)/s+1 ``` 在这个过程中,通过调整不同的超参数如内核大小、步长以及是否使用零填充等选项能够控制模型学习不同类型的空间关系特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值