漫步数学分析二——欧几里得空间

3 欧几里得 n 空间是由所有有序的 n 元实数组成的并且用Rn来表示。象征性的符号为

Rn={(x1,,xn)|x1,,xnR}

因此 Rn R 与自身进行n次笛卡尔乘积的结果,可以写成 Rn=R××R

Rn 的元素通常用单个字母来表示,即 x=(x1,,xn) ,并且称 x Rn中的一个点。

加法和标量乘法用通常的方式进行定义:

(x1,,xn)+(y1,,yn)=(x1+y1,,xn+yn)

乘法为

α(x1,,xn)=(αx1,,αxn)for αR

这些运算的几何意义如图 ??? 所示,该图是三空间的情况即 n=3


这里写图片描述
图1:加法和标量乘法

4 满足加法与标量乘法的欧几里得 n 空间是一个 n 为向量空间。

证明的方法就是直接检查是否满足向量空间的公理,这里不再讨论。这个定理在我们的意料之中,毕竟向量空间是欧几里得空间中向量基本性质的抽象,接下来我们就能通过展示Rn n 个向量的基来说明它的维数是n,例如,标准基 {e1=(1,0,,0),e2=(0,1,0,,0),,en=(0,0,,0,1)}

在标准基中, x=(x1,,xn) 的元素就是 x1,,xn ,而对于 Rn 的其他基,这些元素将是不同的,这就意味着如果用 e1,,en 来表示标准基,那么 x=Σni=1xiei ,但是如果 f1,,fn 是另一组基,那么 x=Σni=1yifi 中的 y1,,yn 是不同的值。

下面是 Rn 中的一些基本运算。

4 Rn 中向量 x 的长度(length)或范数(norm)定义为

x=(i=1nx2i)1/2

其中 x=(x1,,xn) ,两个向量 x,y 之间的距离(distance) 是一个实数并定义如下

d(x,y)=xy={i=1n(xiyi)2}1/2

x,y 的内积(inner product)定义为

x,y=i=1nxiyi

因此我们有 x2=x,x 。对于 R3 空间,读者对 x,y 比较熟悉,即 x,y=xycosθ ,其中 θ x,y 夹角的余弦值,如图 ??? 所示。

现在我们总结一下这些运算的基本性质:

5 对于 Rn 中的向量,我们有
(I) 内积的性质

  1. x,y1+y2=x,y1+x,y2
  2. 对于每个实数 α,x,αy=αx,y
  3. x,y=y,x
  4. x,x0 ,当且仅当 x=0 x,x=0
  5. |x,yxy| (柯西施瓦兹不等式(Cauchy-Schwarz inequality))。
    注意: (v) 可从 (i)-(iv) 推出。

(II) 范数的性质

  1. x0
  2. x=0 当且仅当 x=0
  3. 对于每个实数 α,αx=|α|x
  4. x+yx+y (三角不等式(triangle inequality))

(III) 距离的性质
1. d(x,y)=d(y,x)
2. d(x,y)0
3. d(x,y)=0 当且仅当 x=y
4. d(x,y)d(x,z)+d(z,y) (也称为三角不等式)


这里写图片描述
图2:长度和内积

这些性质都要非常明显的几何意义,例如 (II)(III) 中的 (iv) 表达的就是三角形的一边长小于或等于其他两边长的和(图 ??? )。

对于一个集合,如果其中的函数 d 满足规则(III),那么称该集合为度量空间;对于一个向量空间,如果其中的范数满足规则 (II) ,那么称该空间为范数空间;对于一个向量空间,如果其中的内积满足规则 (I) ,那么称该空间为内积空间。

我们回忆一下线性代数中线性子空间的符号,特别地, Rn (n1) 维线性子空间称为超平面。仿射超平面就是集合 x+H ,其中 H 是一个超平面且xRn x+H 意味着所以 x+y 组成的集合,其中 y H上的值;因此 x+H={x+y|yH} ,如图 ??? 所示。

最后我们推广一下 R3 中的概念,我们称 x,yRn 是正交的(orthogonal)当且仅当 x,y=0 。两个子空间 S,T 是正交的,当且仅当对于所以的 xS,yT,x,y=0 。进一步来讲,如果 S,T 生成 Rn ,那么称他们是正交补(orthogonal complements),当且仅当 S,T 是正交的且他们的维数和为 n 时他们才会是正交补。我们定义S={yRn|x,y=0 for all xS},那么不难看出 S,S 是正交补。除了一些线性代数的基本概念外,我们不需要太多线性代数知识,所以我们不在进行进一步的讨论。


这里写图片描述
图3:三角不等式

1 求出连接点(1,1,1)到(3,2,0)线段的长度。

这个长度就是向量 (3,2,0)(1,1,1)=(2,1,1) 的长度,其长度为

(2,1,1)=22+12+(1)2=6


这里写图片描述
图4:超平面和仿射超平面


这里写图片描述
图5:正交补

2 R3 中,找出直线 x=y=z/2 的正交补(或者其他符号表示为 x1=x2=x3/2 )。

我们称这条直线为 l ,它是由向量(1,1,2) 生成的一维子空间(图???),正交补是一个平面(因为是一个子空间所以过原点),所以有如下的形式

Ax+By+Cz=0


(A,B,C),(x,y,z)=0

其中(A,B,C)是平面的法向量;但是(1,1,2)是与该平面垂直所以正交补是平面

x+y+2z=0

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值