漫步数理统计二十九——函数期望

X=(X1,,Xn) 表示某试验的随机变量,我们一般对 X 的函数感兴趣,表示为 T=T(X) 。例如如果 X 是一个样本, T 可能是我们感兴趣的统计量。我们先从X的线性函数开始;例如对某个特定的向量 a=(a1,,an)

T=aX=i=1naiXi

然后我们会得到这种随机变量的均值与方差。

T 的均值根据期望运算的线性性质可以立刻得出,如下定理所示:

1 T=ni=1aiXi ,假设对 i=1,,n,E[|Xi|]< ,那么

E(T)=i=1naiE(Xi)

对于 T 的方差,我们先给出涉及到协方差的一个结论。令Y=(Y1,,Ym)表示另一个随机向量,对某个特定的向量 b=(b1,,bm),W=bY

2 T=ni=1aiXi,W=mi1biYi ,如果对 i=1,,n,j=1,,m,E[X2i]<,E[Y2j]< ,那么

cov(T,W)=i=1nj=1maibjcov(Xi,Yj)

根据协方差的定义以及定理1,我们可得

cov(T,W)=E[i=1nj=1m(aiXiaiE(Xi))(bjYjbjE(Yj))]=i=1nj=1maibjE[(xiE(Xi))(YjE(Yj))]

得证。 ||

为了求出 T 的方差,我们用T替换定理2中的 W ,从而得到下面的推论:

1 T=i=1naiXi ,假设对于 i=1,,n,E[X2i]<

var(T)=cov(T,T)=i=1na2ivar(Xi)+2i<jaiajcov(Xi,Xj)(1)

注意如果 X1,,Xn 是独立的随机变量,那么 cov(Xi,Xj)=0 ,从而 (1) 得到进一步简化,如下面的推论:

2 如果 X1,,Xn 是拥有有限个变量的独立随机变量,那么

var(T)=i=1na2ivar(Xi)(2)

注意只需要对所有的 ij,Xi,Xj 不相干即可得到这个结论;例如当 X1,,Xn 是独立的,那么 cov(Xi,Xj)=0,ij

考虑我们有一个感兴趣的随机变量 X ,它的密度为f(x:θ),其中 θΩ ,参数 θ 是未知的且我们需要基于样本估计它,关于估计的第一个性质就是它的期望。

1 X 是随机变量,pdf为f(x:θ)或者pmf为 p(x:θ) θΩ 。令 X1,,Xn 是来自 X 分布的随机样本并令T表示一个统计量。我们称 T θ的无偏估计,如果

E(T)=θ, for all θΩ(3)

如果 T 不是无偏的(即,E(T)=θ) ,我们称 T θ的有偏估计。

1 X1,,Xn 是均值为 μ ,方差为 σ2 的随机变量 X 的分布中随机得到的样本,回忆一下样本均值为X¯=n1ni=1Xi,它是样本观测值的线性组合,系数为 ai=n1 ;因此根据定理1与推论2我们有

E(X¯)=μ,var(X¯)=σ2n

因此 X¯ μ 的无偏估计。进一步, X¯ 的方差在 n 很大时非常小。从极限角度来说就是当n无限大时,样本均值 X¯ 收敛到 μ

2 X1,,Xn 如上例所示,样本方差定义为

S2=(n1)1i=1n(XiX¯)2=(n1)1(i=1nX2inX¯2)

利用上例的结论以及 E(X2)=σ2+μ2 可得

E(S2)=(n1)1(i=1nE(X2i)nE(X¯2))=(n1)1{nσ2+nμ2n[(σ2/n+μ2)]}=σ2

因此样本方差是 σ2 的无偏估计。如果 V=n1ni1(XiX¯)2 ,那么 E(V)=((n1)/n)sigma2 ,也就是说 V σ2的无偏估计,这也就是为何我们用 n1 而不是 n

3 X1,,Xn 是均匀分布 (0,θ) 的随机样本,假设 θ 未知, θ 的直观估计为样本的最大值。令 Yn=max{X1,,Xn} ,那么 Yn 的cdf为

FYn(t)=1(tθ)n0t>θ0<tθt0

因此 Yn 的pdf为

fYn(t)={nθntn100<tθelsewhere

基于这个pdd可得 E(Yn)=(n/(n+1))θ ,所以 Yn θ 的有偏估计,注意 ((n+1)/n)Yn θ 的无偏估计。

4 X1,,Xn 随机变量 X 分布的随机样本,该变量的pdf为f(x)。假设 μ=E(X) 存在,进一步假设pdf关于 μ 对称,例1已经说明样本均值是 μ 的无偏估计,那么样本中值 T=T(X1,X2,,Xn)=med{X1,X2,,Xn} 呢?样本中值满足两个性质:(1)如果样本增加(或减少) b ,那么中值也增加(或减少)b。(2)如果样本均乘以-1,那么中值也乘以-1。我们将这两个性质简写成:

T(X1+b,X2+b,,Xn+b)T(X1,X2,,Xn)=T(X1,X2,,Xn)+b=T(X1,X2,,Xn)

如果 Xi 关于 μ 对称,那么随机向量 (X1μ,,Xnμ) 与随机向量 ((X1μ),,(Xnμ)) 的分布是一样的,特别的他们的期望是一样的。由上面的结论可得:

E[T]μ=E[T(X1,,Xn)]μ=E[T(X1μ,,Xnμ)]=E[T((X1μ),,(Xnμ))]=E[T(X1μ1,,Xnμ)]E[T(X1,,Xn)]+μ=E[T]+μ

2E(T)=2μ ,所以 E[T]=μ 。在上面两个性质的条件下,样本中值是 θ 的无偏估计。那么样本均值与样本中值那个更好呢?后面的文章会详细介绍。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值