漫步最优化五——可行域





——

任何满足等式以及不等式约束的点 x 称为优化问题的可行点,满足约束条件的点集构成了 f(x) 的可行定义域,显然,约束定义了一个 En 的子集,因此可行域可以定义为:
R={x:ai(x)=0 for i=1,2,,p and cj(x)0 for j=1,2,,q}

其中 REn

最优点 x 必须位于可行域中,因此一般的约束优化问题可以写成:

minimize f(x)for xR

任何不在 R 中的点x称为不可行点。

如果优化问题的约束都是不等式,那么约束将 En 空间中的点分成三种类型,如下所示:

  1. 内点
  2. 边界点
  3. 外点

内点就是对所有 j,cj(x)>0 的点,边界点就是至少有一个 cj(x)=0 的点,外点就是至少有一个 cj(x)<0 的点。内点是可行点,边界点可能是也可能不是可行点,而外点是不可行点。

如果约束 cm(x) 在某次迭代中等于零,那么我们能说这个约束是活跃的,如果达到收敛条件, cm(x) 等于零,那么最优点 x 在边界上。对于这样的情况,我们称最优点是有约束的,如果约束都是等式,那么可行点一定位于 ai(x)=0 超平面的交集上,其中 i=1,2,,p ,下面用例子说明上面的定义与概念。

1 用作图法,求解下面的优化问题:

minimize subject to: f(x)=x21+x224x1+4c1(x)=x12x2+60c2(x)=x21+x210c3(x)=x10c4(x)=x20

目标函数可以写成:

(x12)2+x22=f(x)

因此 f(x) (x1,x2) 平面上的轮廓为圆心 x1=2,x2=0 ,半径 f(x) 的同心圆,约束 c1(x),c2(x) 表明

x212x1+3


x2x21+1

而约束 c3(x),c4(x) 表明 x1,x2 为正, f(x) 的轮廓与约束边界如图1所示。

图1中的可行域就是阴影部分,问题的解位于点 A 处,在约束c2(x)的边界上。实际上,这个解是约束最优点,所以如果这个问题用数学规划求解,当达到问题的解时,约束 c2(x) 将是活跃的。


这里写图片描述
图1

在没有约束的情况下, f(x) 的最小值发生在点 B 处。

2用作图法求解下面的优化问题:

minimize f(x)=x21+x22+2x2subject to: a1(x)=x21+x221=0c1(x)=x1+x20.50c2(x)=x10c3(x)=x20

目标函数可以写成:

x21+(x2+1)2=f(x)+1

因此 f(x) (x1,x2) 平面上的轮廓为圆心 x1=0,x2=1 ,半径 f(x)+1 的同心圆,约束 a1(x) 是圆心在原点半径为1的圆。另一方 main,约束 c1(x) 是一条直线,因为它要求

x2x1+0.5

最后两个约束表面 x1,x2 是负的,因此得到的图像如图2所示。


这里写图片描述
图2

这时候,可行域在 a1(x)=0 第一象限的弧上,满足约束的最优解在点 A 处,这个例子中有两个活跃的约束,a1(x),c3(x)

没有约束的情况下,解在点 B 处。

在上面的实例中,构成可行域的点集合如图3(a)所示是在一起的,但有时候可行域由两个或多个不联通的部分组成,如图3(b)所示。如果是后者,那么会产生下面的困难。一般而言优化过程都是从初始估计值开始,然后不断迭代产生一系列值,那么如果可行域由两部分组成,A,B,如果初始值位于 A 中,那么最优解就会落到A中,那么就可能错过 B <script type="math/tex" id="MathJax-Element-6786">B</script>中更好的解。然而幸运的是,实际生活中的大部分问题,通过仔细的表示问题,是可以避免这个困难的。


这里写图片描述
图3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值