1. 可行域定义
设具有初始状态 x ⃗ ( t 0 ) \vec x(t_0) x(t0),时间区间 t ∈ [ t 0 , t k = T ] t \in [t_0, t_k=T] t∈[t0,tk=T],对控制量的限制 ∣ u ⃗ ∣ ≤ U max \lvert \vec u \rvert \leq U_{\max} ∣u∣≤Umax。设最终状态量落入的区域为可行域,具有如下图示:
图中红色阴影部分为可行域
G
(
x
⃗
(
t
0
)
,
t
k
,
U
)
G \left( \vec x(t_0), t_k, U \right)
G(x(t0),tk,U),黑色曲线为可行域边界
∂
G
\partial G
∂G。
要求系统的末状态落入规定的可行域内:
图中蓝色为可行域的近边界,绿色为可行域的远边界;而
v
i
v_i
vi为初始状态出发时的朝向。
对于任意一个出发朝向
v
i
v_i
vi,均有一个近边界点和远边界点,这两个点即为沿着
v
i
v_i
vi方向可以到达的最近和最远点。
2. 问题描述
这里对于一个具体的物理问题给出数学模型。对于飞行中的飞机,设其速度
V
=
c
o
n
s
t
.
V=const.
V=const.,飞机朝向与地面水平夹角为
θ
\theta
θ。
{
d
θ
d
t
=
n
g
V
d
X
d
t
=
V
cos
θ
d
Y
d
t
=
V
sin
θ
\begin{cases} \frac{d\theta}{dt} = \frac{ng}{V} \\ \frac{dX}{dt} = V \cos \theta \\ \frac{dY}{dt} = V \sin \theta \end{cases}
⎩⎪⎨⎪⎧dtdθ=VngdtdX=VcosθdtdY=Vsinθ其中
g
g
g为重力加速度,
n
n
n为外力加载在飞机上的方向:
由于外力加载方向
n
⃗
\vec n
n垂直于飞机速度
V
⃗
\vec V
V,因此飞机会发生偏转。
不妨将外力视为控制量,对于其有物理限制:
∣
n
∣
≤
n
max
\lvert n \rvert \leq n^{\max}
∣n∣≤nmax而该物理问题可以描述为:速度
V
V
V为常数的情况下,求出飞机可巡航的最大与最小距离。由于飞机的朝向
v
i
v_i
vi不同,因此其距离也不同。
基于此,可以写出性能指标:
J
=
min
(
X
2
(
T
)
+
Y
2
(
T
)
)
J = \min \left( X^2(T) + Y^2 (T) \right)
J=min(X2(T)+Y2(T))初始状态:
X
=
Y
=
Θ
=
t
0
=
0
X = Y = \Theta = t_0 = 0
X=Y=Θ=t0=0末状态:
t
k
=
T
=
c
o
n
s
t
.
F
1
=
X
(
T
)
−
C
⋅
Y
(
T
)
=
0
Θ
(
t
)
=
v
a
r
.
(1)
t_k = T = const. \\ F_1 = X(T) - C \cdot Y(T) = 0 \\ \Theta (t) = var. \tag{1}
tk=T=const.F1=X(T)−C⋅Y(T)=0Θ(t)=var.(1)即末状态时,只对
X
,
Y
X,Y
X,Y之间做要求,对于角度不做要求。
观察(1)可得,末状态时
X
,
Y
X,Y
X,Y之间为一直线关系:
图中绿线即为最短距离,蓝线即为最长距离。
3. 解题
写出哈密尔顿函数:
H
=
ψ
X
⋅
V
cos
θ
+
ψ
Y
⋅
V
sin
θ
+
ψ
θ
⋅
n
g
V
(2)
H = \psi_X \cdot V \cos \theta + \psi_Y \cdot V \sin \theta + \psi_\theta \cdot \frac{ng}{V} \tag{2}
H=ψX⋅Vcosθ+ψY⋅Vsinθ+ψθ⋅Vng(2)这种问题称为梅耶问题。
写出耦合微分方程组:
{
ψ
˙
X
=
−
∂
H
∂
X
=
0
ψ
˙
Y
=
−
∂
H
∂
Y
=
0
ψ
˙
θ
=
−
∂
H
∂
θ
=
ψ
X
⋅
V
sin
θ
−
ψ
Y
⋅
V
cos
θ
(3)
\begin{cases} \dot \psi_X = - \frac{\partial H}{\partial X} = 0 \\ \dot \psi_Y = - \frac{\partial H}{\partial Y} = 0 \\ \dot \psi_\theta = - \frac{\partial H}{\partial \theta} = \psi_X \cdot V \sin \theta - \psi_Y \cdot V \cos \theta \end{cases} \tag{3}
⎩⎪⎨⎪⎧ψ˙X=−∂X∂H=0ψ˙Y=−∂Y∂H=0ψ˙θ=−∂θ∂H=ψX⋅Vsinθ−ψY⋅Vcosθ(3)根据笔记《优化方法理论合集(12)——动端点问题》(可参考优化方法理论合集(12)——动端点问题),由
ψ
l
(
t
k
)
=
∑
∂
β
l
∂
x
i
⋅
ρ
\psi_l(t_k) = \sum \frac{\partial \beta_l}{\partial x_i} \cdot \rho
ψl(tk)=∑∂xi∂βl⋅ρ有
ψ
X
(
T
)
=
ψ
X
(
t
0
)
=
C
X
ψ
Y
(
T
)
=
ψ
Y
(
t
0
)
=
C
Y
ψ
θ
(
T
)
=
0
(4)
\psi_X (T) = \psi_X (t_0) = C_X \\ \psi_Y (T) = \psi_Y (t_0) = C_Y \\ \psi_\theta (T) = 0 \tag{4}
ψX(T)=ψX(t0)=CXψY(T)=ψY(t0)=CYψθ(T)=0(4)另一方面,将(3)积分有
{
ψ
X
=
c
o
n
s
t
.
=
C
X
ψ
Y
=
c
o
n
s
t
.
=
C
Y
ψ
θ
=
−
ψ
X
⋅
V
cos
θ
−
ψ
Y
⋅
V
sin
θ
=
−
C
X
V
cos
θ
−
C
Y
V
sin
θ
\begin{cases} \psi_X = const. = C_X \\ \psi_Y = const. = C_Y \\ \psi_\theta = - \psi_X \cdot V \cos \theta - \psi_Y \cdot V \sin \theta = - C_X V \cos \theta - C_Y V \sin \theta \end{cases}
⎩⎪⎨⎪⎧ψX=const.=CXψY=const.=CYψθ=−ψX⋅Vcosθ−ψY⋅Vsinθ=−CXVcosθ−CYVsinθ因而
H
=
ψ
X
V
cos
θ
+
ψ
Y
V
sin
θ
+
ψ
θ
n
g
V
=
C
X
V
cos
θ
+
C
Y
V
sin
θ
+
ψ
θ
n
g
V
\begin{aligned} H &= \psi_X V \cos \theta + \psi_Y V \sin \theta + \psi_\theta \frac{ng}{V} \\ &= C_X V \cos \theta + C_Y V \sin \theta + \psi_\theta \frac{ng}{V} \end{aligned}
H=ψXVcosθ+ψYVsinθ+ψθVng=CXVcosθ+CYVsinθ+ψθVng由于在控制量
n
n
n取得最优值时
H
H
H达到极值,因此可以通过
∂
H
∂
n
=
0
\frac{\partial H}{\partial n} = 0
∂n∂H=0来求出
n
n
n:
∂
H
∂
n
=
0
⟹
ψ
θ
⋅
g
V
=
0
\frac{\partial H}{\partial n} = 0 \\ \Longrightarrow \psi_\theta \cdot \frac{g}{V} = 0
∂n∂H=0⟹ψθ⋅Vg=0该式不可能成立,因此,根据庞特里亚金最大值原理,需要找到
ψ
θ
⋅
g
V
\psi_\theta \cdot \frac{g}{V}
ψθ⋅Vg的最大值。
仅将该部分记为
Δ
H
(
n
)
=
ψ
θ
⋅
n
g
V
\Delta H (n) = \psi_\theta \cdot \frac{ng}{V}
ΔH(n)=ψθ⋅Vng其中
g
>
0
,
V
>
0
g>0, V>0
g>0,V>0,若
ψ
θ
>
0
\psi_\theta>0
ψθ>0,那么可以取
n
∘
=
n
max
n^{\circ} = n^{\max}
n∘=nmax;若
ψ
θ
<
0
\psi_\theta<0
ψθ<0,那么可以取
n
∘
=
−
n
max
n^{\circ} = -n^{\max}
n∘=−nmax。这样
Δ
H
(
n
)
\Delta H (n)
ΔH(n)可以取到极值。
综上:
n
∘
=
n
max
⋅
s
i
g
n
(
ψ
θ
)
(5)
n^{\circ} = n^{\max} \cdot sign \left( \psi_\theta \right) \tag{5}
n∘=nmax⋅sign(ψθ)(5)
另一方面,引入角度 φ \varphi φ为 C X , X Y C_X, X_Y CX,XY两个向量之间夹角:
有
{
C
X
=
C
X
2
+
C
Y
2
cos
φ
C
Y
=
C
X
2
+
C
Y
2
sin
φ
\begin{cases} C_X = \sqrt{C_X^2 + C_Y^2} \cos \varphi\\ C_Y = \sqrt{C_X^2 + C_Y^2} \sin \varphi \end{cases}
{CX=CX2+CY2cosφCY=CX2+CY2sinφ记
A
=
C
X
2
+
C
Y
2
>
0
A = \sqrt{C_X^2 + C_Y^2} > 0
A=CX2+CY2>0,代入
H
H
H有
H
=
ψ
X
V
cos
θ
+
ψ
Y
V
sin
θ
+
ψ
θ
n
g
V
=
A
V
cos
θ
cos
φ
+
A
V
sin
θ
sin
φ
+
ψ
θ
n
∘
g
V
\begin{aligned} H &= \psi_X V \cos \theta + \psi_Y V \sin \theta + \psi_\theta \frac{ng}{V} \\ &= A V \cos \theta \cos \varphi + A V \sin \theta \sin \varphi + \psi_\theta \frac{n^{\circ}g}{V} \end{aligned}
H=ψXVcosθ+ψYVsinθ+ψθVng=AVcosθcosφ+AVsinθsinφ+ψθVn∘g再代入
n
∘
=
n
max
⋅
s
i
g
n
(
ψ
θ
)
n^{\circ} = n^{\max} \cdot sign \left( \psi_\theta \right)
n∘=nmax⋅sign(ψθ)有
H
=
A
V
cos
θ
cos
φ
+
A
V
sin
θ
sin
φ
+
ψ
θ
n
∘
g
V
=
A
V
cos
θ
cos
φ
+
A
V
sin
θ
sin
φ
+
ψ
θ
g
V
⋅
n
max
⋅
s
i
g
n
(
ψ
θ
)
=
A
V
cos
θ
cos
φ
+
A
V
sin
θ
sin
φ
+
∣
ψ
θ
∣
g
V
⋅
n
max
=
A
V
cos
(
θ
−
φ
)
+
∣
ψ
θ
∣
g
V
⋅
n
max
=
A
V
cos
ξ
+
∣
ψ
θ
∣
g
V
⋅
n
max
(6)
\begin{aligned} H &= A V \cos \theta \cos \varphi + A V \sin \theta \sin \varphi + \psi_\theta \frac{n^{\circ}g}{V} \\ &= A V \cos \theta \cos \varphi + A V \sin \theta \sin \varphi + \psi_\theta \frac{g}{V} \cdot n^{\max} \cdot sign \left( \psi_\theta \right) \\ &= A V \cos \theta \cos \varphi + A V \sin \theta \sin \varphi + \big\lvert \psi_\theta \big\rvert \frac{g}{V} \cdot n^{\max} \\ &= A V \cos \left( \theta - \varphi \right) + \big\lvert \psi_\theta \big\rvert \frac{g}{V} \cdot n^{\max} \\ &= A V \cos \xi + \big\lvert \psi_\theta \big\rvert \frac{g}{V} \cdot n^{\max} \end{aligned} \\ \tag{6}
H=AVcosθcosφ+AVsinθsinφ+ψθVn∘g=AVcosθcosφ+AVsinθsinφ+ψθVg⋅nmax⋅sign(ψθ)=AVcosθcosφ+AVsinθsinφ+∣∣ψθ∣∣Vg⋅nmax=AVcos(θ−φ)+∣∣ψθ∣∣Vg⋅nmax=AVcosξ+∣∣ψθ∣∣Vg⋅nmax(6)在表达式(6)中可以看出,
H
H
H和
n
n
n的关系是线性的。
一般地,当存在线性关系时有
{
ψ
θ
(
τ
)
=
0
ψ
˙
θ
(
τ
)
=
0
ψ
¨
θ
(
τ
)
=
0
τ
∈
[
t
∗
,
T
]
(7)
\begin{cases} \psi_\theta (\tau) = 0 \\ \dot \psi_\theta (\tau) = 0 \\ \ddot \psi_\theta (\tau) = 0 \\ \tau \in [t_*, T] \end{cases} \tag{7}
⎩⎪⎪⎪⎨⎪⎪⎪⎧ψθ(τ)=0ψ˙θ(τ)=0ψ¨θ(τ)=0τ∈[t∗,T](7)上式中出现了
ψ
θ
\psi_\theta
ψθ的导数,因此现在来求出其导数:
ψ
˙
θ
=
C
X
V
sin
θ
−
C
Y
V
cos
θ
=
A
V
sin
θ
cos
φ
−
A
V
cos
θ
sin
φ
=
A
V
sin
(
θ
−
φ
)
=
A
V
sin
ξ
(8)
\begin{aligned} \dot \psi_\theta &= C_X V \sin \theta - C_Y V \cos \theta \\ &= AV \sin \theta \cos \varphi - AV \cos \theta \sin \varphi \\ &= AV \sin (\theta - \varphi ) \\ &= AV \sin \xi \end{aligned} \tag{8}
ψ˙θ=CXVsinθ−CYVcosθ=AVsinθcosφ−AVcosθsinφ=AVsin(θ−φ)=AVsinξ(8)由于
φ
\varphi
φ不是
t
t
t的函数,因此
φ
˙
=
0
\dot \varphi = 0
φ˙=0,从而
ψ
¨
θ
=
A
cos
ξ
⋅
ξ
˙
=
A
cos
ξ
⋅
θ
˙
(9)
\begin{aligned} \ddot \psi_\theta &= A \cos \xi \cdot \dot \xi \\ &= A \cos \xi \cdot \dot \theta \end{aligned} \tag{9}
ψ¨θ=Acosξ⋅ξ˙=Acosξ⋅θ˙(9)解(8)有
ξ
=
±
π
⋅
b
,
b
=
1
,
2
,
⋯
\xi = \pm \pi \cdot b, \quad b = 1, 2, \cdots
ξ=±π⋅b,b=1,2,⋯再解(9)有
n
∘
g
V
=
0
⟹
n
∘
(
τ
)
=
0
,
τ
∈
[
t
∗
,
T
]
\frac{n^{\circ}g}{V} = 0 \Longrightarrow n^{\circ} (\tau) = 0, \quad \tau \in [t_*, T]
Vn∘g=0⟹n∘(τ)=0,τ∈[t∗,T]
4. 凯里指标
凯里指标定义如下:
∂
∂
n
[
d
2
d
t
2
(
∂
H
∂
n
)
]
≥
0
(10)
\frac{\partial}{\partial n} \left[ \frac{d^2}{dt^2} \left( \frac{\partial H}{\partial n} \right)\right] \geq 0 \tag{10}
∂n∂[dt2d2(∂n∂H)]≥0(10)如果满足该条件,那么线性情况下的控制量
n
n
n即为最优控制量。
对于本文的问题,
d
2
d
t
2
(
∂
H
∂
n
)
=
d
d
t
(
ψ
˙
θ
g
V
)
=
ψ
¨
θ
g
V
=
A
V
cos
ξ
⋅
θ
˙
⋅
g
V
=
A
n
g
2
V
cos
ξ
⟹
∂
∂
n
[
d
2
d
t
2
(
∂
H
∂
n
)
]
=
∂
∂
n
(
A
n
g
2
V
cos
ξ
)
=
A
g
2
V
cos
ξ
\begin{aligned} \frac{d^2}{dt^2} \left( \frac{\partial H}{\partial n} \right) &= \frac{d}{dt} \left( \frac{\dot \psi_\theta g}{V}\right) \\ &= \ddot \psi_\theta \frac{g}{V} \\ &= AV \cos \xi \cdot \dot \theta \cdot \frac{g}{V} \\ &= A n \frac{g^2}{V} \cos \xi \end{aligned} \\ \Longrightarrow \begin{aligned} \frac{\partial}{\partial n} \left[ \frac{d^2}{dt^2} \left( \frac{\partial H}{\partial n} \right)\right] &= \frac{\partial}{\partial n} \left( A n \frac{g^2}{V} \cos \xi \right) \\ &= A \frac{g^2}{V} \cos \xi \end{aligned}
dt2d2(∂n∂H)=dtd(Vψ˙θg)=ψ¨θVg=AVcosξ⋅θ˙⋅Vg=AnVg2cosξ⟹∂n∂[dt2d2(∂n∂H)]=∂n∂(AnVg2cosξ)=AVg2cosξ为满足(10),则
cos
ξ
≥
0
\cos \xi \geq 0
cosξ≥0而又
ξ
=
±
π
b
,
b
=
1
,
2
,
⋯
\xi = \pm \pi b, \quad b = 1, 2, \cdots
ξ=±πb,b=1,2,⋯,则
ξ
=
±
2
π
b
,
b
=
0
,
1
,
2
,
⋯
\xi = \pm 2\pi b, \quad b = 0, 1, 2, \cdots
ξ=±2πb,b=0,1,2,⋯