问题表述:
有训练数据集 T={
(x1,y1),(x2,y2),⋯,(xN,yN)} ,其中,样本个数为N,每个样本有m个属性, xi∈R,yi∈R , 预测未知样本集的输出。
很明显这是一个回归问题,我们想要求出一个回归函数 hw(x) (在线性回归下可以表示成 hw(x)=∑mi=0wi⋅xi=xTw ) ,使其在未知样本集得到期望的输出,一个很好的思路即是希望在已知的训练数据集上得到的输出 hw(x(i)) 与真实值 y(i) 足够小。于是我们可以定义一个损失函数
J(w)=12∑i=1N(hw(x(i))−y(i))2
则我们的目的是使得损失函数最小。
1.通用的表示方式
我们使用梯度下降法来求解损失函数最小。即通过每次更新w,w更新的方向是损失函数对w的负梯度方向,每次更新之后损失函数都会变得更小,直到不能减小为止。包括两个步骤:1、初始化w;2、对w更新
- inital w
- repeat :
-
wj=wj−α∂J(w)∂wj
其中, α 为步长,控制每次更新的幅度,而 ∂J(w)∂wj
-