最小二乘法求解的两种表示方法

本文介绍了最小二乘法在回归问题中的应用,通过两种表示方法求解最优回归函数。首先,概述了问题背景和损失函数,然后详细阐述了通用的梯度下降法更新权重的过程。接着,引入向量表示法,利用矩阵运算提高计算效率,并给出损失函数的向量形式。这种方法不仅简化公式,还能在编程中借助Numpy等科学计算库提升计算速度。
摘要由CSDN通过智能技术生成
问题表述:

有训练数据集 T={ (x1,y1),(x2,y2),,(xN,yN)} ,其中,样本个数为N,每个样本有m个属性, xiR,yiR , 预测未知样本集的输出。
很明显这是一个回归问题,我们想要求出一个回归函数 hw(x) (在线性回归下可以表示成 hw(x)=mi=0wixi=xTw ) ,使其在未知样本集得到期望的输出,一个很好的思路即是希望在已知的训练数据集上得到的输出 hw(x(i)) 与真实值 y(i) 足够小。于是我们可以定义一个损失函数

J(w)=12i=1N(hw(x(i))y(i))2
则我们的目的是使得损失函数最小。

1.通用的表示方式

我们使用梯度下降法来求解损失函数最小。即通过每次更新w,w更新的方向是损失函数对w的负梯度方向,每次更新之后损失函数都会变得更小,直到不能减小为止。包括两个步骤:1、初始化w;2、对w更新

  • inital w
  • repeat :
    • wj=wjαJ(w)wj

    其中, α 为步长,控制每次更新的幅度,而 J(w)wj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值