Ollama 更新!本地跑 LLama3.2,轻量级+视觉能力,能媲美GPT-4o?

前段时间,Meta 开源了 Llama 3.2 轻量化模型,为移动端跑大模型提供了新选择!

同时,Llama 3.2 视觉模型(Llama 3.2 Vision)也正式开源,号称媲美 GPT-4o。

前两天,Llama 3.2 Vision 在 Ollama 上也正式上线!

今日分享,就对 Llama 3.2 Vision 实测一番。

最后,应用到我们上篇的票据识别任务中,看看效果真有官宣的那么惊艳么?

1. Llama 3.2 亮点

老规矩,还是简短介绍下:Llama 3.2 都有哪些亮点

一句话:轻量化 + 视觉多模态能力!

具体点:

  • 文本模型:有 1B 和 3B 版本,即便参数少,也支持128k tokens的上下文长度;基于LoRA和SpinQuant 对模型进行深度优化,内存使用量减少41%推理效率翻了2-4倍
  • 多模态模型:有 11B 和 90B 版本,在视觉理解方面,与Claude3 Haiku和GPT 4o-mini 可 PK。

2. Llama 3.2 实测

Ollama 是面向小白友好的大模型部署工具,为此本篇继续采用 Ollama 跑 Llama 3.2。

不了解 Ollama 的小伙伴,可翻看之前的教程:

本地部署大模型?Ollama 部署和实战,看这篇就够了

2.1 环境准备

参考上述教程,假设你在本地已经准备好 Ollama。

当前 Ollama Library 中已支持 Llama 3.2 下载,因此,一行命令把 llama3.2-vision 拉起来。

ollama run llama3.2-vision

如果遇到如下报错:

pulling manifest 
Error: pull model manifest: 412: 

The model you are attempting to pull requires a newer version of Ollama.

说明你的 ollama 版本需要更新了。

如果你也和我一样,采用 docker 安装,则需要删除容器,重新下载最新镜像进行安装:

docker stop ollama
docker rm ollama
docker image rm ollama/ollama
# 注:海外镜像,国内用户需自备梯子
docker pull ollama/ollama

可以发现,当前最新版本为 0.4.1:

ollama --version
ollama version is 0.4.1

然后,再起一个容器:

docker run -d --gpus "device=2" -v ollama:/root/.ollama -p 3002:11434 --restart unless-stopped --name ollama ollama/ollama

注:我这里指定 --gpus "device=2",如果单张显存不够,需指定多张卡,Ollama 会帮你自动分配。

显存占用情况如何?

2.2 文本模型

进入容器,并下载模型 llama3.2 3B版本:

docker exec -it ollama /bin/bash
ollama run llama3.2

显存占用:请确保至少 4 G 显存。

2.3 多模态模型

进入容器,并下载模型 llama3.2-vision 11B版本:

docker exec -it ollama /bin/bash
ollama run llama3.2-vision

显存占用:请确保至少 12 G 显存。

注:ollama 中模型默认采用了 4bit 量化。

3. 接入 Dify

3.1 模型接入

要把 Ollama 部署的模型接入 Dify 有两种方式。

首先,找到设置 - 模型供应商。

方式一:
找到 Ollama 类型,然后进行添加,记得把Vision能力打开:

方式二:

把 Ollama 模型接入 OneAPI,然后在模型供应商这里选择 OpenAI-API-compatible

不了解 OneAPI 的小伙伴可以回看教程:OneAPI-接口管理和分发神器:大模型一键封装成OpenAI协议

个人更推荐 方式二,你会体会到接口统一的快乐~

3.2 应用集成

最后,我们在上篇的基础上,把用到 Qwen2-VL 的组件,LLM 全部替换成刚刚接入的 llama3.2-vision,如下图:

实测效果咋样?

嗯~ o( ̄▽ ̄)o 价格等基本信息还是抓到了。

不过,相比上篇实测的 Qwen2-VL 就差点意思了:

  • 从中文指令遵循上看:给到同样的提示词,llama3.2-vision 压根不按你的意图来;
  • 从识别结果上看:中文 OCR 也被 Qwen2-VL 甩开好几条街。

当然,换用 90B 的模型会不会好很多?感兴趣的朋友可以试试~

结论:现阶段,对于票据识别这个任务而言,综合考虑成本和效果,还是调用云端的 Qwen2-VL-72B 吧。

写在最后

本文带大家本地跑了 Meta 最新开源的 Llama 3.2,并在票据识别任务上进行了实测。

个人体验而言:Llama 系列,都得在中文指令数据上微调后,才能中文场景中使用,同等参数规模下,国产大模型其实更具性价比。

如果对你有帮助,欢迎点赞收藏备用。


为方便大家交流,新建了一个 AI 交流群,欢迎感兴趣的小伙伴加入。

最近搭建的微信机器人小爱(AI)也在群里,公众号后台「联系我」,拉你进群。

### MiniCPM-V、Llama以及LLaVA的技术详情 #### MiniCPM-V概述 MiniCPM-V是一款能够在移动设备上运行的大规模多模态语言模型(MMLLM),其性能可媲美GPT-4V级别[^1]。该研究旨在探索如何让强大的AI能力部署到资源受限环境中,比如智能手机或其他边缘计算平台。 #### LLaMA的支持情况 对于基于Transformer架构构建的语言模型而言,推理效率至关重要。MiniCPM项目组通过优化使得MiniCPM能够兼容多种流行的推理框架,其中包括但不限于`llama.cpp`, `ollama`, `fastllm` 和 `mlx_lm`等工具链[^4]。这意味着开发者可以利用这些高效轻量级库来加速MiniCPM的应用场景开发过程。 ```python import llama_cpp as lc model = lc.Model('path/to/mini_cpm_v') output = model.generate(prompt="Tell me about the weather today.") print(output) ``` #### 多模态融合特性 除了传统的文本处理外,现代大型语言模型还趋向于集成视觉理解功能。例如,在某些版本中加入了图像识别模块,允许用户上传图片并获得相应的描述或解释;而像LLaVA这样的增强型变体则进一步扩展了这一概念,不仅限于静态图形分析,还包括视频流解析等功能[^2]。 #### 训练数据的重要性 值得注意的是,尽管拥有先进的算法设计,但如果缺乏高质量且多样化的训练素材,则难以实现理想的智能化水平。研究表明,在接近训练周期末端所使用的那部分资料往往对最终形成的对话风格有着更为显著的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值