RAG是什么?
- RAG是检索增强生成(Retrieval-Augmented Generation)的缩写,它是一种结合了检索系统和大型语言模型(LLM)的技术,用于优化语言模型的输出。RAG技术允许在生成响应之前从训练数据来源之外的权威知识库中引用信息,从而提高了回答问题、翻译语言和完成句子等任务的准确性和相关性。RAG通过检索模型搜索大型数据集或知识库,并将检索到的信息提供给生成模型,以生成更加准确和符合语境的文本回复。这种技术在自然语言处理领域中非常重要,因为它能够克服传统语言模型由于训练数据时滞性和局限性而面临的挑战。
RAG技术如何帮助提高语言模型的性能
- RAG技术通过结合外部知识库的检索能力与大型语言模型(LLM)的生成能力,显著提高了模型的性能。这种技术允许模型在生成回答之前检索相关信息,从而减少了生成错误信息或“幻觉”的可能性,并提高了回答的准确性和时效性。RAG技术还增强了模型的可信度,因为它能够提供信息来源,使用户可以验证AI生成内容的可靠性。此外,RAG模型可以根据需要轻松更新或替换知识库,无需重新训练整个模型,这提高了系统的灵活性和适应性。
RAG的核心是什么?
- 要明白RAG的核心是什么,那就需要了解RAG的流程包括哪几个步骤?
- 主要包括用户提问 —> 检索查询《知识库》切片—> 检索向量数据库 —> 结合定义的角色和上下文背景生成面向大模型的prompt —>访问LLM —> 输出结果给用户。
- 在这几个步骤中,首先,用户提问,是起点,是发起人,也是RAG最终的目的(满足用户提问)。
其次,大模型LLM内部和向量数据库,从低成本的角度来说是不可控的,而我们能努力的方向就只剩下知识库和Prompt这两个了。 - 知识库是重点,它需要经过数据清洗、数据的导入、数据分段以及数据标注,这几个步骤之后,才能更加趋近我们的期望(这里只能说趋近,不能100%满足,因为没办法覆盖所有问题,尤其是一些推理性问题),所以这是一个核心点。
- 另一个核心点就是提示词Prompt,它直接影响着LLM最终的答案形式、字数、语气、风格等等。所以研究RAG,就要重点往这两个方面去走。
以上为个人观点,若理解有误,请协助批评指证,谢谢