
金融和量化
文章平均质量分 77
量化常用值
源代码分析
这个作者很懒,什么都没留下…
展开
-
梁文峰股指期货AI量化
这句话描述了2010年中国金融市场的重要事件及其对量化投资领域的影响,尤其与梁文锋(幻方量化创始人)团队的早期发展密切相关。这种“工具创新→策略爆发→头部集中”的路径,至今仍是量化行业发展的核心规律。原创 2025-03-13 13:06:15 · 422 阅读 · 0 评论 -
高级技能知识点ebpf和xdp
基础包、高级包和企业包的分层已经存在,但用户需要更多的功能示例,这样他们可以更清楚地展示自己的技能,同时帮助潜在客户理解这些服务能解决什么问题。例如,在基础包中添加一个安全检测脚本的例子,需要说明使用eBPF的哪些技术(如kprobes或tracepoints),如何检测恶意行为,以及这对客户有什么好处,比如减少入侵风险。总结来说,需要提供更多分层的具体示例,每个示例的技术细节、客户痛点、解决方案和成果,并指导用户如何在Fiverr上有效展示这些内容,从而提升他们的订单量和客户满意度。原创 2025-03-12 14:28:34 · 441 阅读 · 0 评论 -
Lead-lag的小赛道和思路分析说明和变化分析
好的,我现在要回答用户关于“小赛道的lead-lag”在量化领域的分析说明。首先,我需要明确用户的问题是什么。用户提到的“小赛道”可能指的是细分市场或特定行业板块,而“lead-lag”即领先-滞后效应,这在量化投资中通常指某些资产价格变动会领先或滞后于其他资产的现象。接下来,我需要结合提供的搜索结果来构建答案。首先,查看搜索结果中的相关文献。原创 2025-03-12 13:58:43 · 889 阅读 · 0 评论 -
接什么外包单的ROI最高-包括渗透和金融量化
嗯,用户想知道程序员在接外包兼职时,选择哪种类型的单子ROI最高。现在提供的选项包括数据采集、数据分析、前端、后端、机器学习、深度学习、传感器数据收集、上位机软件、嵌入式开发。我需要先分析每个领域的优缺点,然后比较它们的市场需求、开发周期、技术门槛、竞争情况、收入潜力等因素。首先,市场需求。前端和后端开发应该是需求最大的,因为几乎每个项目都需要网站或应用程序的支持。数据分析和机器学习最近也很热门,尤其是企业越来越依赖数据驱动决策。数据采集和传感器相关可能需求较小众,但如果有特定行业需求,可能也不错。上位机和原创 2025-03-11 17:34:17 · 1579 阅读 · 0 评论 -
中低频量化系统控制分析
嗯,用户问的是事件驱动的金融中低频交易系统的技术架构怎么构建。首先,我需要明确几个关键点:事件驱动、中低频交易、技术架构。事件驱动通常意味着系统会对特定事件做出反应,比如新闻发布、财报数据等。中低频交易可能指的是每天几次到每小时几次的交易频率,不像高频交易那样需要微秒级的响应。所以系统不需要超低延迟,但需要稳定可靠,能够处理复杂事件分析。接下来,我需要考虑整个架构的组成部分。通常,这样的系统可能包括数据采集、事件处理、策略执行、风险管理、存储等模块。数据源可能包括市场数据、新闻、社交媒体、宏观经济指标等。原创 2025-03-07 15:29:44 · 657 阅读 · 0 评论 -
如何用量化的词汇显示的自己非常牛逼plus,高深莫测的词汇
嗯,用户问的是搞量化的人怎么展示自己很厉害,还有哪些他们常用的难懂词汇。首先,我需要确定用户的具体需求是什么。可能用户是想在求职或者社交场合中突出自己的量化技能,或者想了解量化领域的术语以便更好地理解或交流。接下来,我需要考虑量化金融涉及的主要领域,比如策略开发、风险管理、高频交易等。每个领域都有其专业术语,比如阿尔法、贝塔、夏普比率等。用户可能想知道这些术语,以及如何用这些术语来展示自己的专业知识。原创 2025-02-28 12:39:56 · 267 阅读 · 0 评论 -
因子衰减因素-因子存活时间效用
示例定义:2. 数据准备数据结构:需包含以下字段:字段说明日期因子值(标准化后)未来收益(用于计算IC)是否失效(1=失效,0=未失效)生存时间(从因子生成到失效的天数)DolphinDB 数据表示例:3. 计算生存函数(Kaplan-Meier估计)Kaplan-Meier曲线:非参数估计生存概率随时间的变化。公式:[S(t) = \prod_{i: t_i \leq t} \left(1 - \frac{d_i}{n原创 2025-02-27 10:58:25 · 497 阅读 · 0 评论 -
高频因子和特性分析说明。
高频因子是量化交易中针对短期市场行为(如秒级、分钟级数据)设计的特征指标,其核心在于捕捉市场微观结构的瞬时变化。入手,逐步向高频延伸,同时优先掌握。高频因子的核心价值在于。原创 2025-02-27 10:55:28 · 1219 阅读 · 0 评论 -
横截面排序和因子的示例
通过以上代码,你可以在 DolphinDB 中完整实现 Alpha#40 因子计算逻辑。如果需要进一步回测或实时计算,可将结果表。与其他交易信号结合使用。原创 2025-02-27 10:25:26 · 389 阅读 · 0 评论 -
DLL是通用的么,C#的生成DLL能否C++用,大部分不通用。
通用性排序C/C++ DLL/SO > COM 组件 > 托管 DLL选择建议需要最大兼容性:使用 C 接口的 DLL/SO.NET 环境:使用托管 DLLWindows 特定:考虑 COM跨平台考虑使用条件编译提供统一的接口定义考虑不同操作系统的差异性能考虑减少跨边界调用批量处理数据适当的缓存策略这样的设计可以最大程度地确保库的通用性和可维护性。原创 2024-11-26 16:26:49 · 646 阅读 · 0 评论 -
吐槽下高并发的数据处理
定时器频率和精度:确保sendTicker能够达到预期的触发频率,并考虑对高频率下的资源开销进行优化。并发处理和数据一致性:正确使用锁机制,避免竞态条件,确保数据的一致性和完整性。缓冲区管理:合理管理数据处理缓冲区,避免数据丢失和内存过度消耗。错误处理:完善错误处理机制,确保系统的稳定性和可靠性。系统可扩展性:考虑整体系统架构的可扩展性,以应对更高的并发量和数据处理需求。建议您在进行了上述优化后,进行详细的性能测试和压力测试,以验证系统在高负载下的表现,并根据测试结果进一步调整和优化代码。原创 2024-11-26 16:22:01 · 958 阅读 · 0 评论 -
环形数据缓冲区优化
你可以根据具体需求调整缓冲区大小、同步间隔等参数。需要注意的是要正确处理数据库连接的关闭和资源清理。好的,我来帮你实现这些关键功能。原创 2024-11-25 17:26:44 · 185 阅读 · 0 评论 -
C++版本下数据回放的部分代码,给出不同结构和角度的代码,RAII,和移动语义
【代码】C++版本下数据回放的部分代码,给出不同结构和角度的代码,RAII,和移动语义。原创 2024-11-25 17:04:59 · 463 阅读 · 0 评论 -
如何设计数据回放,数据回放的思路等等
大批量带有时间戳的数据回放的思路,给出你的分析说明。a)b)c)a)b)c)您觉得这个设计方案如何?需要我详细说明某个部分吗?原创 2024-11-25 16:13:07 · 638 阅读 · 0 评论 -
Go语言和Python语言的IPC等通信方式-共享内存/内存映射文件/ZeroMQ和gRPC
数据结构:例如,每个传感器有一个固定大小的缓冲区(2500个float64)。排列方式:可以按照的二维数组形式存储。共享内存:提供最高性能,适合高频率、大数据量的传输,但实现复杂,尤其在跨语言环境中。内存映射文件:稍低于共享内存的性能,但更容易实现和管理。ZeroMQ 和 gRPC:提供灵活性和跨语言支持,适合各种通信模式,但性能不及共享内存,且需要额外的学习和实现工作。确定每个传感器的数据格式(例如,float64定义数据在共享内存中的存储顺序(例如,固定大小的缓冲区,按传感器ID排列)。原创 2024-11-12 16:33:12 · 1062 阅读 · 0 评论 -
详细介绍下Z得分和标准正态分布
Z得分,也称为标准分数,是描述一个数据点偏离其所属数据集平均值的距离,单位为标准差。具体来说,Z得分表示数据点距离均值的多少个标准差。ZX−μσZσX−μ( X ) 是单个数据点的值。( \mu ) 是数据集的平均值。( \sigma ) 是数据集的标准差。通过这个公式,Z得分将原始数据转换为一个无量纲的数值,使得不同数据集之间的比较成为可能。原创 2024-10-30 16:59:52 · 2909 阅读 · 0 评论 -
AllGather和AlltoAll的算子结构分析说明
AllGather算子用于将每个参与进程的数据聚合到所有进程中。具体来说,假设有P个进程,每个进程拥有一部分数据,执行 AllGather 后,每个进程都将拥有所有进程的数据的集合。原创 2024-10-30 11:30:07 · 1787 阅读 · 0 评论 -
凸优化和非凸优化
凸优化是指目标函数为凸函数,且约束条件构成凸集合的优化问题。形式化地,若目标函数 ( f: \mathbb{R}^n \rightarrow \mathbb{R} ) 满足对于任意 ( x, y \in \mathbb{R}^n ) 和 ( \theta \in [0,1] ),有则称 ( f ) 为凸函数。若所有约束条件 ( g_i(x) \leq 0 ) 和 ( h_j(x) = 0 ) 中,( g_i(x) ) 为凸函数,且 ( h_j(x) ) 是仿射函数,则称该优化问题为凸优化问题。原创 2024-10-29 23:35:56 · 1874 阅读 · 0 评论 -
李群在多个领域中的应用
李群(Lie Groups)是数学中的一个重要概念,结合了群论和流形的结构。具体来说,李群是同时具有光滑流形结构和群结构的数学对象,其中群运算(乘法和取逆)是光滑映射。李群在物理学、工程学以及其它科学领域中具有广泛的应用,特别是在描述连续对称性和变换方面。原创 2024-10-29 23:33:07 · 943 阅读 · 0 评论 -
金融交易门槛和规则介绍
了解不同金融交易品种的资金门槛和结算规则,有助于投资者根据自身的资金状况、交易策略和风险偏好,选择最适合的投资工具。同时,建议投资者在进入市场前,充分了解相关产品的交易机制和风险,制定合理的资金管理和风险控制策略,以确保稳健的投资回报。原创 2024-10-09 23:16:07 · 1588 阅读 · 0 评论 -
金融交易策略与工具介绍
逆回购(Reverse Repurchase Agreement)是指金融机构将证券出售给对方,并约定在未来某一日期以约定的价格买回这些证券的一种短期融资工具。对于卖出证券的一方而言,逆回购是一种借入资金的方式;而对购买证券的一方,则是一种投资手段。日内回转交易(Intraday Reversion Trading)是一种高频交易策略,旨在利用当天市场中价格的波动进行快速买卖,以获取短期利润。该策略的核心思想是在市场价格达到一定的高点或低点时进行相应的买入或卖出操作,然后在当天结束前平仓。原创 2024-10-09 22:34:01 · 1373 阅读 · 0 评论 -
介绍前复权-后复权-复权的概念
复权是股票分析中不可或缺的一部分,通过前复权和后复权的方法,投资者能够消除分红、配股等因素对股价的影响,保持数据的连续性和可比性,从而做出更为准确的投资决策。原创 2024-10-09 22:27:12 · 2608 阅读 · 0 评论 -
A股中的板块轮动
是一种投资策略,旨在通过在不同经济周期或市场环境下调整投资组合中的板块比例,以获取超额收益。该策略基于不同板块在经济周期的不同阶段表现各异的原理,投资者通过分析经济走势、政策导向和市场情绪等因素,选择具备增长潜力的板块进行投资,从而优化整体投资回报。原创 2024-10-09 17:41:08 · 2981 阅读 · 0 评论 -
C++的常见面试题
本文系统地介绍了C++面试中常见的题目和相关知识点,涵盖了基础知识、面向对象编程、STL、先进的C++特性以及实际编程问题。掌握这些内容不仅有助于应对面试中的问答环节,还能提升编写高效、可靠C++代码的能力。在准备面试时,建议通过实际编程练习和项目经验,深入理解每个概念,并熟练应用这些知识解决实际问题。原创 2024-10-05 10:34:18 · 1608 阅读 · 0 评论 -
介绍CTA交易策略
CTA策略详解CTA(Commodity Trading Advisor)策略,即商品交易顾问策略,是一种系统化的交易方法,广泛应用于期货、期权和其他衍生品市场。CTA策略主要通过量化模型和算法,利用市场趋势、价格波动和其他金融指标,进行多元化投资和风险管理,以实现稳定的投资回报。什么是CTA策略CTA策略源于美国商品期货交易委员会(CFTC)监管下的商品交易顾问(Commodity Trading Advisor)业务。原创 2024-10-05 10:14:12 · 4682 阅读 · 0 评论 -
介绍流计算引擎
本章将详细介绍各种流计算引擎,包括响应式状态引擎、时间序列引擎、日级时间序列引擎、会话窗口引擎、异常检测引擎、横截面引擎、Asofjoin引擎、窗口连接引擎、等值连接引擎、左半等值引擎、LookupJoin引擎、订单簿引擎以及复杂事件处理引擎。本章详细介绍了各种流计算引擎及其子引擎,包括响应式状态引擎、时间序列引擎、日级时间序列引擎、会话窗口引擎、异常检测引擎、横截面引擎、Asofjoin引擎、窗口连接引擎、等值连接引擎、左半等值引擎、LookupJoin引擎、订单簿引擎以及复杂事件处理引擎。原创 2024-10-03 18:02:56 · 1362 阅读 · 0 评论 -
流计算介绍说明
批计算(Batch Processing)是一种对大量静态数据进行一次性处理的计算模式。它通常在预定的时间点或根据事件触发执行,对历史数据进行全面的分析和计算。流计算(Stream Processing)是一种对持续生成的实时数据流进行逐条处理的计算模式。与批计算不同,流计算强调对数据的低延迟处理和即时响应。增量计算(Incremental Computation)是一种优化计算过程的方法,通过仅计算自上一次计算以来发生变化的数据,减少重复计算,提高计算效率。特别适用于对动态变化的数据集进行频繁更新的场景。原创 2024-10-03 17:38:32 · 1141 阅读 · 0 评论 -
滑动窗口和数据处理
滑动窗口详解滑动窗口(Sliding Window)是计算机科学中一种常见的算法技术,广泛应用于数据流处理、网络通信、图像处理等多个领域。滑动窗口通过在数据序列中滑动一个窗口来处理数据,从而实现对数据的高效计算和分析。原创 2024-10-03 17:15:07 · 2926 阅读 · 0 评论 -
土地财政到股权财政的影响
近年来,随着中国经济结构的调整和政策导向的变化,地方政府的财政收入模式也在发生深刻变化。传统依赖土地出让收入的“土地财政”模式逐渐被“股权财政”所取代,这一转变对股市,尤其是高股息股票的行情产生了显著影响。本文将详细分析这一转变的背景、机制以及对股价的具体影响。原创 2024-10-02 13:22:19 · 1599 阅读 · 0 评论 -
基于rust的金融框架-开源框架动态
虽然基于 Rust 的开源金融类项目尚未像其他语言(如 Python、Java、C++)那样丰富,但随着 Rust 生态系统的不断发展和其在金融领域应用的逐步深入,预计未来会有更多高质量的金融类开源项目涌现。Finagle 是一个社区驱动的 Rust 项目,旨在为金融应用提供高性能的交易引擎和工具集。Tardigrade Finance 是一个基于 Rust 开发的去中心化金融(DeFi)平台,旨在提供安全、高效的金融服务,包括借贷、交易和投资等功能。原创 2024-10-02 13:05:00 · 934 阅读 · 0 评论 -
预言机项目介绍分析
预测预言机项目旨在通过收集和分析各种实时市场数据,利用先进的机器学习和数据分析技术,预测未来三个月内某一特定资产的价格。该项目需要处理海量数据、确保数据的实时性和准确性,并提供可靠的预测结果供用户参考。构建一个高效的预测预言机项目,需要综合运用多种技术和工具,涵盖数据收集、处理、存储、预测模型开发、接口与服务、部署与运维、安全性与合规性等多个方面。通过合理的系统架构设计、科学的技术选型和严格的项目管理,可以实现一个可靠、实时、高性能的预测系统,为用户提供有价值的预测服务。原创 2024-10-02 12:42:31 · 1835 阅读 · 0 评论 -
rust和金融-量化
同时,Zenoh 作为一个高性能、低延迟的分布式通信中间件,也具备在金融行业中应用的潜力,特别是在实时数据传输、交易指令传输和分布式系统协同等方面。随着技术的不断发展,Rust 和 Zenoh 有望在金融行业中发挥更大的作用,推动金融科技的创新与发展。近年来,Rust 在金融领域的应用越来越广泛,得益于其高性能、安全性和并发性。与此同时,Zenoh 作为一个高性能、低延迟的分布式通信中间件,也具备在金融领域中的潜在应用。以下将分别介绍 Zenoh 在金融领域的可用性以及 Rust 在金融领域中的具体应用。原创 2024-10-02 12:34:58 · 1181 阅读 · 0 评论 -
仓位管理-对冲-风险控制
风控风控是你持续赚钱的关键,需要看很多交易规则,而且要做一些止损止盈,以应对市场的极端风险,比如做好对冲。量化的本身是类似于精打细算的赚小钱,当过私募投资者的朋友都会知道,去年公募翻倍,量化二三十个点,今年公募暴跌,量化回撤反而小。基本上就是风控的原因,低风险赚小钱,图一个持久。你提到的这段话强调了风控(风险控制)在投资中的关键作用,尤其是在持续获利和应对市场极端风险方面。原创 2024-09-30 21:22:52 · 543 阅读 · 0 评论 -
新特征识别-特征漂移检测
虽然没有单一的Python库专门针对“历史数据中缺乏某些特征,而未来数据中这些特征出现”的情况,但通过结合使用RiverBoruta等库,可以构建一个灵活的系统来识别和适应新特征的出现。这些方法包括概念漂移检测、自动特征工程、增量学习和动态特征选择,能够帮助你有效地处理和利用动态变化的数据特征。若需要进一步的指导,可以根据具体应用场景和数据特点,选择合适的库和方法进行深入研究和实践。原创 2024-09-30 21:09:54 · 1508 阅读 · 0 评论 -
金融时间序列预测模型
通过合理选择和组合这些模型,可以有效提升预测的准确性和稳定性,为投资决策和风险管理提供有力支持。LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),通过引入记忆单元和门控机制,解决了传统RNN在处理长序列时的梯度消失和爆炸问题。混合模型结合了多种不同类型的模型优势,通过组合多个模型的预测结果,提升整体的预测性能和稳定性。通过深入理解这些模型的原理和应用场景,金融分析师和数据科学家可以更有效地进行市场预测、风险管理和策略优化,为决策提供强有力的支持。原创 2024-09-30 21:06:11 · 1709 阅读 · 0 评论 -
talib和talipp-金融指标
TALib (Technical Analysis Library) 是一个广泛使用的技术分析库,提供了多种技术指标和工具,用于金融市场数据的分析。TALib 的 Python 版本被称为 talib,而 talipp 是一个基于 talib 的 Python 库,提供了更高层次的封装和功能。TALib 简介TALib 是一个开源的技术分析库,最初由 Mario Fortier 开发。它支持多种编程语言,包括 C、C++、Java、.NET、Python 等。原创 2024-09-30 21:04:26 · 1279 阅读 · 0 评论 -
信息熵和多尺度信息
在金融领域,信息熵被用作衡量市场不确定性和复杂性的工具。# 计算价格变化# 计算价格变化的概率分布# 计算香农熵。原创 2024-09-30 21:02:41 · 952 阅读 · 0 评论 -
小波变换和pyfresh
在Python中,有几个库可以用于基于小波变换的金融时间序列分析。原创 2024-09-30 21:01:47 · 882 阅读 · 0 评论 -
对冲基金的20种策略
对冲基金使用多种核心理念和策略来实现盈利,以下是20种常见的对冲基金核心理念:原创 2024-09-30 21:00:17 · 1103 阅读 · 0 评论 -
异常数据的检测
3. 使用机器学习方法Isolation Forest是一种常用的异常检测算法,适用于高维数据。5. 可视化异常点通过可视化来检查和验证检测到的异常点。plt.show()总结金融时间序列数据的异常检测可以通过多种方法实现,包括统计方法、机器学习方法和深度学习方法。选择合适的方法取决于数据的特性和具体的应用场景。通过结合多种方法,可以提高异常检测的准确性和鲁棒性。原创 2024-09-30 20:59:30 · 1321 阅读 · 0 评论