金融和量化
文章平均质量分 77
量化常用值
源代码分析
这个作者很懒,什么都没留下…
展开
-
Go语言和Python语言的IPC等通信方式-共享内存/内存映射文件/ZeroMQ和gRPC
数据结构:例如,每个传感器有一个固定大小的缓冲区(2500个float64)。排列方式:可以按照的二维数组形式存储。共享内存:提供最高性能,适合高频率、大数据量的传输,但实现复杂,尤其在跨语言环境中。内存映射文件:稍低于共享内存的性能,但更容易实现和管理。ZeroMQ 和 gRPC:提供灵活性和跨语言支持,适合各种通信模式,但性能不及共享内存,且需要额外的学习和实现工作。确定每个传感器的数据格式(例如,float64定义数据在共享内存中的存储顺序(例如,固定大小的缓冲区,按传感器ID排列)。原创 2024-11-12 16:33:12 · 839 阅读 · 0 评论 -
详细介绍下Z得分和标准正态分布
Z得分,也称为标准分数,是描述一个数据点偏离其所属数据集平均值的距离,单位为标准差。具体来说,Z得分表示数据点距离均值的多少个标准差。ZX−μσZσX−μ( X ) 是单个数据点的值。( \mu ) 是数据集的平均值。( \sigma ) 是数据集的标准差。通过这个公式,Z得分将原始数据转换为一个无量纲的数值,使得不同数据集之间的比较成为可能。原创 2024-10-30 16:59:52 · 1340 阅读 · 0 评论 -
AllGather和AlltoAll的算子结构分析说明
AllGather算子用于将每个参与进程的数据聚合到所有进程中。具体来说,假设有P个进程,每个进程拥有一部分数据,执行 AllGather 后,每个进程都将拥有所有进程的数据的集合。原创 2024-10-30 11:30:07 · 389 阅读 · 0 评论 -
凸优化和非凸优化
凸优化是指目标函数为凸函数,且约束条件构成凸集合的优化问题。形式化地,若目标函数 ( f: \mathbb{R}^n \rightarrow \mathbb{R} ) 满足对于任意 ( x, y \in \mathbb{R}^n ) 和 ( \theta \in [0,1] ),有则称 ( f ) 为凸函数。若所有约束条件 ( g_i(x) \leq 0 ) 和 ( h_j(x) = 0 ) 中,( g_i(x) ) 为凸函数,且 ( h_j(x) ) 是仿射函数,则称该优化问题为凸优化问题。原创 2024-10-29 23:35:56 · 1383 阅读 · 0 评论 -
李群在多个领域中的应用
李群(Lie Groups)是数学中的一个重要概念,结合了群论和流形的结构。具体来说,李群是同时具有光滑流形结构和群结构的数学对象,其中群运算(乘法和取逆)是光滑映射。李群在物理学、工程学以及其它科学领域中具有广泛的应用,特别是在描述连续对称性和变换方面。原创 2024-10-29 23:33:07 · 551 阅读 · 0 评论 -
金融交易门槛和规则介绍
了解不同金融交易品种的资金门槛和结算规则,有助于投资者根据自身的资金状况、交易策略和风险偏好,选择最适合的投资工具。同时,建议投资者在进入市场前,充分了解相关产品的交易机制和风险,制定合理的资金管理和风险控制策略,以确保稳健的投资回报。原创 2024-10-09 23:16:07 · 892 阅读 · 0 评论 -
金融交易策略与工具介绍
逆回购(Reverse Repurchase Agreement)是指金融机构将证券出售给对方,并约定在未来某一日期以约定的价格买回这些证券的一种短期融资工具。对于卖出证券的一方而言,逆回购是一种借入资金的方式;而对购买证券的一方,则是一种投资手段。日内回转交易(Intraday Reversion Trading)是一种高频交易策略,旨在利用当天市场中价格的波动进行快速买卖,以获取短期利润。该策略的核心思想是在市场价格达到一定的高点或低点时进行相应的买入或卖出操作,然后在当天结束前平仓。原创 2024-10-09 22:34:01 · 1007 阅读 · 0 评论 -
介绍前复权-后复权-复权的概念
复权是股票分析中不可或缺的一部分,通过前复权和后复权的方法,投资者能够消除分红、配股等因素对股价的影响,保持数据的连续性和可比性,从而做出更为准确的投资决策。原创 2024-10-09 22:27:12 · 710 阅读 · 0 评论 -
A股中的板块轮动
是一种投资策略,旨在通过在不同经济周期或市场环境下调整投资组合中的板块比例,以获取超额收益。该策略基于不同板块在经济周期的不同阶段表现各异的原理,投资者通过分析经济走势、政策导向和市场情绪等因素,选择具备增长潜力的板块进行投资,从而优化整体投资回报。原创 2024-10-09 17:41:08 · 552 阅读 · 0 评论 -
C++的常见面试题
本文系统地介绍了C++面试中常见的题目和相关知识点,涵盖了基础知识、面向对象编程、STL、先进的C++特性以及实际编程问题。掌握这些内容不仅有助于应对面试中的问答环节,还能提升编写高效、可靠C++代码的能力。在准备面试时,建议通过实际编程练习和项目经验,深入理解每个概念,并熟练应用这些知识解决实际问题。原创 2024-10-05 10:34:18 · 1525 阅读 · 0 评论 -
介绍CTA交易策略
CTA策略详解CTA(Commodity Trading Advisor)策略,即商品交易顾问策略,是一种系统化的交易方法,广泛应用于期货、期权和其他衍生品市场。CTA策略主要通过量化模型和算法,利用市场趋势、价格波动和其他金融指标,进行多元化投资和风险管理,以实现稳定的投资回报。什么是CTA策略CTA策略源于美国商品期货交易委员会(CFTC)监管下的商品交易顾问(Commodity Trading Advisor)业务。原创 2024-10-05 10:14:12 · 1356 阅读 · 0 评论 -
介绍流计算引擎
本章将详细介绍各种流计算引擎,包括响应式状态引擎、时间序列引擎、日级时间序列引擎、会话窗口引擎、异常检测引擎、横截面引擎、Asofjoin引擎、窗口连接引擎、等值连接引擎、左半等值引擎、LookupJoin引擎、订单簿引擎以及复杂事件处理引擎。本章详细介绍了各种流计算引擎及其子引擎,包括响应式状态引擎、时间序列引擎、日级时间序列引擎、会话窗口引擎、异常检测引擎、横截面引擎、Asofjoin引擎、窗口连接引擎、等值连接引擎、左半等值引擎、LookupJoin引擎、订单簿引擎以及复杂事件处理引擎。原创 2024-10-03 18:02:56 · 1090 阅读 · 0 评论 -
流计算介绍说明
批计算(Batch Processing)是一种对大量静态数据进行一次性处理的计算模式。它通常在预定的时间点或根据事件触发执行,对历史数据进行全面的分析和计算。流计算(Stream Processing)是一种对持续生成的实时数据流进行逐条处理的计算模式。与批计算不同,流计算强调对数据的低延迟处理和即时响应。增量计算(Incremental Computation)是一种优化计算过程的方法,通过仅计算自上一次计算以来发生变化的数据,减少重复计算,提高计算效率。特别适用于对动态变化的数据集进行频繁更新的场景。原创 2024-10-03 17:38:32 · 939 阅读 · 0 评论 -
滑动窗口和数据处理
滑动窗口详解滑动窗口(Sliding Window)是计算机科学中一种常见的算法技术,广泛应用于数据流处理、网络通信、图像处理等多个领域。滑动窗口通过在数据序列中滑动一个窗口来处理数据,从而实现对数据的高效计算和分析。原创 2024-10-03 17:15:07 · 1695 阅读 · 0 评论 -
土地财政到股权财政的影响
近年来,随着中国经济结构的调整和政策导向的变化,地方政府的财政收入模式也在发生深刻变化。传统依赖土地出让收入的“土地财政”模式逐渐被“股权财政”所取代,这一转变对股市,尤其是高股息股票的行情产生了显著影响。本文将详细分析这一转变的背景、机制以及对股价的具体影响。原创 2024-10-02 13:22:19 · 1022 阅读 · 0 评论 -
基于rust的金融框架-开源框架动态
虽然基于 Rust 的开源金融类项目尚未像其他语言(如 Python、Java、C++)那样丰富,但随着 Rust 生态系统的不断发展和其在金融领域应用的逐步深入,预计未来会有更多高质量的金融类开源项目涌现。Finagle 是一个社区驱动的 Rust 项目,旨在为金融应用提供高性能的交易引擎和工具集。Tardigrade Finance 是一个基于 Rust 开发的去中心化金融(DeFi)平台,旨在提供安全、高效的金融服务,包括借贷、交易和投资等功能。原创 2024-10-02 13:05:00 · 544 阅读 · 0 评论 -
预言机项目介绍分析
预测预言机项目旨在通过收集和分析各种实时市场数据,利用先进的机器学习和数据分析技术,预测未来三个月内某一特定资产的价格。该项目需要处理海量数据、确保数据的实时性和准确性,并提供可靠的预测结果供用户参考。构建一个高效的预测预言机项目,需要综合运用多种技术和工具,涵盖数据收集、处理、存储、预测模型开发、接口与服务、部署与运维、安全性与合规性等多个方面。通过合理的系统架构设计、科学的技术选型和严格的项目管理,可以实现一个可靠、实时、高性能的预测系统,为用户提供有价值的预测服务。原创 2024-10-02 12:42:31 · 1738 阅读 · 0 评论 -
rust和金融-量化
同时,Zenoh 作为一个高性能、低延迟的分布式通信中间件,也具备在金融行业中应用的潜力,特别是在实时数据传输、交易指令传输和分布式系统协同等方面。随着技术的不断发展,Rust 和 Zenoh 有望在金融行业中发挥更大的作用,推动金融科技的创新与发展。近年来,Rust 在金融领域的应用越来越广泛,得益于其高性能、安全性和并发性。与此同时,Zenoh 作为一个高性能、低延迟的分布式通信中间件,也具备在金融领域中的潜在应用。以下将分别介绍 Zenoh 在金融领域的可用性以及 Rust 在金融领域中的具体应用。原创 2024-10-02 12:34:58 · 727 阅读 · 0 评论 -
仓位管理-对冲-风险控制
风控风控是你持续赚钱的关键,需要看很多交易规则,而且要做一些止损止盈,以应对市场的极端风险,比如做好对冲。量化的本身是类似于精打细算的赚小钱,当过私募投资者的朋友都会知道,去年公募翻倍,量化二三十个点,今年公募暴跌,量化回撤反而小。基本上就是风控的原因,低风险赚小钱,图一个持久。你提到的这段话强调了风控(风险控制)在投资中的关键作用,尤其是在持续获利和应对市场极端风险方面。原创 2024-09-30 21:22:52 · 387 阅读 · 0 评论 -
新特征识别-特征漂移检测
虽然没有单一的Python库专门针对“历史数据中缺乏某些特征,而未来数据中这些特征出现”的情况,但通过结合使用RiverBoruta等库,可以构建一个灵活的系统来识别和适应新特征的出现。这些方法包括概念漂移检测、自动特征工程、增量学习和动态特征选择,能够帮助你有效地处理和利用动态变化的数据特征。若需要进一步的指导,可以根据具体应用场景和数据特点,选择合适的库和方法进行深入研究和实践。原创 2024-09-30 21:09:54 · 1168 阅读 · 0 评论 -
金融时间序列预测模型
通过合理选择和组合这些模型,可以有效提升预测的准确性和稳定性,为投资决策和风险管理提供有力支持。LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),通过引入记忆单元和门控机制,解决了传统RNN在处理长序列时的梯度消失和爆炸问题。混合模型结合了多种不同类型的模型优势,通过组合多个模型的预测结果,提升整体的预测性能和稳定性。通过深入理解这些模型的原理和应用场景,金融分析师和数据科学家可以更有效地进行市场预测、风险管理和策略优化,为决策提供强有力的支持。原创 2024-09-30 21:06:11 · 799 阅读 · 0 评论 -
talib和talipp-金融指标
TALib (Technical Analysis Library) 是一个广泛使用的技术分析库,提供了多种技术指标和工具,用于金融市场数据的分析。TALib 的 Python 版本被称为 talib,而 talipp 是一个基于 talib 的 Python 库,提供了更高层次的封装和功能。TALib 简介TALib 是一个开源的技术分析库,最初由 Mario Fortier 开发。它支持多种编程语言,包括 C、C++、Java、.NET、Python 等。原创 2024-09-30 21:04:26 · 795 阅读 · 0 评论 -
信息熵和多尺度信息
在金融领域,信息熵被用作衡量市场不确定性和复杂性的工具。# 计算价格变化# 计算价格变化的概率分布# 计算香农熵。原创 2024-09-30 21:02:41 · 798 阅读 · 0 评论 -
小波变换和pyfresh
在Python中,有几个库可以用于基于小波变换的金融时间序列分析。原创 2024-09-30 21:01:47 · 812 阅读 · 0 评论 -
对冲基金的20种策略
对冲基金使用多种核心理念和策略来实现盈利,以下是20种常见的对冲基金核心理念:原创 2024-09-30 21:00:17 · 338 阅读 · 0 评论 -
异常数据的检测
3. 使用机器学习方法Isolation Forest是一种常用的异常检测算法,适用于高维数据。5. 可视化异常点通过可视化来检查和验证检测到的异常点。plt.show()总结金融时间序列数据的异常检测可以通过多种方法实现,包括统计方法、机器学习方法和深度学习方法。选择合适的方法取决于数据的特性和具体的应用场景。通过结合多种方法,可以提高异常检测的准确性和鲁棒性。原创 2024-09-30 20:59:30 · 1114 阅读 · 0 评论 -
介绍异常数据的获取方法
异常数据的识别和处理原创 2024-09-30 20:58:46 · 950 阅读 · 0 评论 -
介绍msgpack和数据流
好的,下面是修改后的代码,展示如何使用msgpack进行数据流传输。服务端和客户端将持续发送和接收数据流。原创 2024-09-30 13:31:54 · 310 阅读 · 0 评论 -
50种动量指标和趋势跟踪指标
以下是你列出的技术指标的详细介绍:动量指标和趋势跟踪指标原创 2024-09-30 12:27:56 · 945 阅读 · 0 评论 -
事件驱动算法交易
事件驱动算法交易是一种基于特定事件触发交易决策的自动化交易方法,具有高效性、一致性和自动化的优点。尽管存在一定的复杂性和技术风险,但通过充分的测试和验证,可以有效提高交易策略的执行效率和效果。使用交易所或数据提供商的API接口,实时获取市场数据和事件,并根据预设的规则和算法做出交易决策。● 数据依赖性:依赖高质量的市场数据和事件数据,数据质量和延迟可能影响交易效果。● 技术风险:算法和系统的错误可能导致交易损失,需要进行充分的测试和验证。● 一致性:基于预设的规则和算法,确保交易策略的一致性和可重复性。原创 2024-09-30 12:26:32 · 871 阅读 · 0 评论 -
算法交易策略
当然,除了事件驱动算法交易,还有许多其他类型的算法交易策略。原创 2024-09-30 12:25:53 · 310 阅读 · 0 评论 -
香农的算法交易原理
香农的算法交易策略通常指的是基于信息理论的交易策略,特别是由信息理论之父克劳德·香农(Claude Shannon)提出的“香农赌注”(Shannon’s Demon)策略。这个策略也被称为“香农的赌博策略”或“香农的对冲策略”。香农的策略基于信息理论和概率论,旨在通过动态调整投资组合中的资产比例来实现长期财富增长。原创 2024-09-30 12:24:47 · 223 阅读 · 0 评论 -
金融时间序列预测未来模型
上述介绍的20种金融时间序列预测模型涵盖了从传统统计方法到现代深度学习技术的广泛范围。选择合适的模型需根据具体的数据特性、预测目标和计算资源等因素进行综合考虑。在实际应用中,常常需要对多种模型进行比较和组合,以实现最佳的预测效果。通过深入理解这些模型的原理和应用场景,金融分析师和数据科学家可以更有效地进行市场预测、风险管理和策略优化,为决策提供强有力的支持。原创 2024-09-29 22:11:21 · 678 阅读 · 0 评论 -
流式数据截断处理和缓冲区
针对流式数据处理,尤其是在数据可能被截断的情况下,一个常见的策略是在接收端维护一个缓冲区,将接收到的数据片段累积到缓冲区中,直到检测到一个完整的数据单元(例如完整的 JSON 对象)再进行处理。这通常涉及到检查某些特定的分隔符或结构,如 JSON 的结束标记。这样的修改可以确保即使数据在传输中被截断,也能在接收到完整的数据后正确处理。原创 2024-09-29 10:50:23 · 265 阅读 · 0 评论 -
小波变换和金融市场分析
基于小波变换的金融量化日间策略是一种应用数学方法来分析、处理金融时间序列数据的策略。小波变换作为一种有效的时间频率分析工具,能够帮助投资者捕捉到金融市场数据中的瞬时特征,从而在日内交易中找到有利的交易时机。原创 2024-09-28 21:14:35 · 288 阅读 · 0 评论 -
Zipline回测工具
Zipline 是一个事件驱动的回测系统,旨在简化量化交易策略的开发和测试过程。它支持股票、期货等多种资产类别,并与Pandas、NumPy等数据分析库无缝集成,使用户能够轻松处理和分析金融数据。Zipline默认支持来自Quantopian的数据源,但用户也可以导入自定义数据,如CSV文件或数据库中的数据。# 示例代码路径: data/custom_data.pyZipline作为一个强大的回测框架,为量化交易策略的开发和测试提供了丰富的工具和灵活的接口。原创 2024-09-28 21:09:51 · 1067 阅读 · 0 评论 -
介绍格兰杰因果检验理论
格兰杰因果检验由诺贝尔经济学奖得主克莱夫·格兰杰(Clive Granger)提出,用于检验一个时间序列 ( X ) 是否包含有助于预测另一个时间序列 ( Y ) 的信息。具体来说,如果过去的 ( X ) 值能显著提高对 ( Y ) 的预测能力,则认为 ( X ) 格兰杰导致 ( Y )。格兰杰因果检验是一种强大的工具,用于揭示时间序列之间的预测关系。然而,在使用时需谨慎,确保满足检验的前提条件,并结合领域知识解释结果。理解其基本原理和局限性,有助于在实际应用中有效利用该方法,辅助决策和预测。原创 2024-09-28 20:56:59 · 1388 阅读 · 0 评论 -
实时数据流处理的分析思路
实时数据流处理是现代数据架构中的重要组成部分,能够为业务提供即时的洞察和决策支持。通过选择合适的技术和合理的架构设计,结合有效的优化和监控手段,可以构建高效、可靠的实时数据处理系统,满足多样化的业务需求。实时数据流处理技术不断发展,新的工具和方法层出不穷。保持对最新技术的关注和深入理解,有助于构建更加高效和灵活的数据处理系统,从而在竞争激烈的市场中获得优势。原创 2024-09-28 20:47:37 · 735 阅读 · 0 评论 -
动态仓位管理和风险计算
动态仓位管理(Dynamic Portfolio Management)指的是在投资过程中,根据市场状况、资产价格变动、宏观经济指标等因素,动态调整投资组合中各类资产的配置比例。这种方法与静态仓位管理(Static Portfolio Management)不同,后者在初始设定后保持不变,缺乏灵活性和适应性。动态仓位管理和风险计算是现代投资组合管理中不可或缺的两大核心要素。通过动态调整投资组合的仓位,投资者能够更好地适应市场变化,优化回报,并有效控制风险。原创 2024-09-26 15:12:36 · 357 阅读 · 0 评论 -
仓位管理-风险控制
在金融市场(包括股票、期货和加密货币市场)中,(Position Management)是交易成功的关键因素之一。有效的头寸管理不仅能够提升盈利能力,还能有效控制和降低风险。以下是关于头寸管理的详细介绍,包括仓位控制、风险管理策略以及更复杂的策略和良好的仓位管理实践。原创 2024-09-25 09:42:05 · 815 阅读 · 0 评论