
数据处理和大数据
文章平均质量分 69
源代码分析
这个作者很懒,什么都没留下…
展开
-
dolphindb异常数据监控和价格监控
是的,DolphinDB 可以进行价格监控和异常数据监控。原创 2024-12-02 17:33:37 · 330 阅读 · 0 评论 -
messagepack的缺点。protobuf的缺点
【代码】messagepack的缺点。protobuf的缺点。原创 2024-12-02 16:48:55 · 455 阅读 · 0 评论 -
共享内存方法和内存映射文件方法
您的理解很正确:建议:这样可以既保持灵活性,又能获得较好的性能。根据实际需求,可以选择纯Redis方案或混合方案。原创 2024-12-02 15:57:30 · 796 阅读 · 0 评论 -
跨进程传递信息-共享内存方案-zeromq-内存映射文件
这种方案比 ZeroMQ 更轻量,而且性能更好。对于您的场景,建议优先考虑共享内存或内存映射文件的方案,这样可以避免频繁的文件IO操作,同时保持较好的性能。这种文件监控模式实际上更接近于**观察者模式(Observer Pattern)**而不是Actor模式。让我用中文回答您的问题。原创 2024-12-02 15:48:07 · 435 阅读 · 0 评论 -
Celery和AirFlow和状态管理-任务管理任务调度-TaskFlow-工作流-ETL-数据分析
在处理多轮数据处理任务时,监控每个节点的数据状态至关重要。以下是几种常见的方法和最佳实践,帮助你有效地判断和管理数据处理的状态。原创 2024-11-29 17:53:55 · 1097 阅读 · 0 评论 -
Rust下的传统并发编程思路
Rust 提供了丰富且安全的传统并发编程工具,通过线程、同步原语和消息传递,开发者可以构建高性能的并发应用。Rust 的所有权系统和类型检查在编译时确保了并发代码的安全性,极大地减少了数据竞争和内存错误。结合 Rust 生态中的第三方库,开发者可以根据具体需求选择最合适的并发模型和工具,充分发挥 Rust 在并发编程中的优势。原创 2024-11-28 17:58:30 · 607 阅读 · 0 评论 -
Actor的并发编程
本文将详细介绍如何在 Rust 中进行并发编程,常用的包(Crates),示例代码,以及 Rust 下的 Actor 并发模型和 Reactor 模型。Actix 是 Rust 生态中一个强大的 Actor 模型框架,广泛应用于高性能网络服务和并发应用的开发。Rust 提供了丰富的并发和异步编程工具,通过合理选择和使用这些工具,可以构建高性能、安全的并发应用。无论是基于线程的并发模型,还是基于 Actor 或 Reactor 的异步模型,Rust 都能提供坚实的支持。原创 2024-11-28 17:55:21 · 1075 阅读 · 0 评论 -
Go语言和时间戳顺序处理解决goroutine的乱序问题
【代码】Go语言和时间戳顺序处理解决goroutine的乱序问题。原创 2024-11-28 16:29:10 · 334 阅读 · 0 评论 -
Go语言下Goroutine和并发
【代码】Go语言下Goroutine和并发。原创 2024-11-28 10:22:35 · 182 阅读 · 0 评论 -
Go和Goroutine和Goroutine下的并发处理
建议根据实际需求调整缓冲区大小和工作协程数量。原创 2024-11-28 10:18:34 · 380 阅读 · 0 评论 -
DLL是通用的么,C#的生成DLL能否C++用,大部分不通用。
通用性排序C/C++ DLL/SO > COM 组件 > 托管 DLL选择建议需要最大兼容性:使用 C 接口的 DLL/SO.NET 环境:使用托管 DLLWindows 特定:考虑 COM跨平台考虑使用条件编译提供统一的接口定义考虑不同操作系统的差异性能考虑减少跨边界调用批量处理数据适当的缓存策略这样的设计可以最大程度地确保库的通用性和可维护性。原创 2024-11-26 16:26:49 · 646 阅读 · 0 评论 -
吐槽下高并发的数据处理
定时器频率和精度:确保sendTicker能够达到预期的触发频率,并考虑对高频率下的资源开销进行优化。并发处理和数据一致性:正确使用锁机制,避免竞态条件,确保数据的一致性和完整性。缓冲区管理:合理管理数据处理缓冲区,避免数据丢失和内存过度消耗。错误处理:完善错误处理机制,确保系统的稳定性和可靠性。系统可扩展性:考虑整体系统架构的可扩展性,以应对更高的并发量和数据处理需求。建议您在进行了上述优化后,进行详细的性能测试和压力测试,以验证系统在高负载下的表现,并根据测试结果进一步调整和优化代码。原创 2024-11-26 16:22:01 · 958 阅读 · 0 评论 -
环形数据缓冲区优化
你可以根据具体需求调整缓冲区大小、同步间隔等参数。需要注意的是要正确处理数据库连接的关闭和资源清理。好的,我来帮你实现这些关键功能。原创 2024-11-25 17:26:44 · 185 阅读 · 0 评论 -
C++版本下数据回放的部分代码,给出不同结构和角度的代码,RAII,和移动语义
【代码】C++版本下数据回放的部分代码,给出不同结构和角度的代码,RAII,和移动语义。原创 2024-11-25 17:04:59 · 463 阅读 · 0 评论 -
如何设计数据回放,数据回放的思路等等
大批量带有时间戳的数据回放的思路,给出你的分析说明。a)b)c)a)b)c)您觉得这个设计方案如何?需要我详细说明某个部分吗?原创 2024-11-25 16:13:07 · 638 阅读 · 0 评论 -
ansible-inventory
是一个非常有用的工具,能够帮助用户快速查看和管理 Ansible 的配置选项。通过合理使用这些命令,用户可以更好地理解和控制 Ansible 的行为。原创 2024-11-21 11:39:30 · 425 阅读 · 0 评论 -
matplotlib的GUI方式和非GUI方式带来的内存泄漏问题
matplotlib是一个用于创建静态、动画和交互式可视化的绘图库,而 tkinter则是Python标准的GUI工具包,用于创建桌面应用程序的窗口、按钮等界面元素。matplotlib 的后端修改后,直接就不出现内存持续增长的情况了。使用 tk 后端时,matplotlib 会与 PySimpleGUI 中使用的 tkinter 进行冲突,导致资源管理混乱,最终引发内存泄漏。谨慎选择后端: 在使用 matplotlib 时,要根据实际需求选择合适的 backend,避免不必要的依赖关系。原创 2024-11-21 10:32:03 · 513 阅读 · 0 评论 -
Pywin32的计划任务和坑点
【代码】Pywin32的计划任务和坑点。原创 2024-11-21 10:29:49 · 285 阅读 · 0 评论 -
内存泄漏问题小结
上面两段代码,会有5个字节的泄露,因为字符串和切片的两个变量,底层是共享内存的。这个场景,如果在高并发,并且数据够大的情况下,就算是临时的泄露,也可能对性能有极大的影响。以上代码,之所以会造成内存泄露。是因为time.After的底层是实现了一个timer,只要定时器未到时间,这个定时器就不会被gc回收,从而造成临时的内存泄露。结构使用不当也是开发中常见的,只是可能并发不高,或者内存泄露的不多,导致使用者容易忽视掉。持续增长的常驻协程,申请了大量内存空间,由于是常驻的协程,不会释放内存造成泄露。原创 2024-11-21 10:14:43 · 309 阅读 · 0 评论 -
内存分析管理功能-弱引用和内存清理
【代码】内存分析管理功能-弱引用和内存清理。原创 2024-11-21 10:03:15 · 277 阅读 · 0 评论 -
可能重复的初始化错误
这些改进可以帮助减少内存使用并提高程序效率。建议在程序退出时适当清理资源。原创 2024-11-21 09:30:14 · 356 阅读 · 0 评论 -
内存泄漏分析-弱引用
在Python中进行内存分析以检测内存泄漏或内存持续增长的问题,是确保应用程序稳定性和性能的重要步骤。以下是详细的指南,涵盖内存分析的工具、流程以及弱引用在处理图片时的应用。一、内存泄漏与内存增长的区别● 内存泄漏(Memory Leak):指程序中不再需要的对象由于引用关系没有被正确释放,导致这些对象无法被垃圾回收机制回收,从而占用内存。● 内存持续增长:不一定是内存泄漏,可能是由于程序持续产生新数据而没有及时清理旧数据,导致内存占用不断增加。二、Python中常用的内存分析工具。原创 2024-11-20 17:44:31 · 827 阅读 · 0 评论 -
内存泄漏调试
遇到这个问题,首先要弄清楚内存里面,到底存储了哪些类型的数据。从后面的输出结果,可以看到ObservationList和IdentityPartitionCluster一直在持续增长,但是只能看到数量,并不能看到占用内存的数据大小和内容。可以明显得看到是django的问题,后来上网查了下django内存泄漏,原来是因为django在debug模式下,会保存每一次的sql语句。references = heap[0].byvia # byvia返回该对象的被哪些引用, heap[0]是内存消耗最大的对象。原创 2024-11-20 10:52:35 · 622 阅读 · 0 评论 -
内存分析详细说明
下面我将整合多个内存分析工具,创建一个更全面的分析装饰器系统。这个系统将包含 memory_profiler、line_profiler、guppy3 和自定义的内存跟踪器,并将所有结果输出到日志文件中。原创 2024-11-19 18:03:51 · 328 阅读 · 0 评论 -
内存分析装饰器的实现-日志系统-内存泄漏-内存分析
我将帮你设置一个完整的日志系统来记录内存分析的结果。原创 2024-11-19 18:00:15 · 184 阅读 · 0 评论 -
内存泄漏如何分析(Python版本)
通过系统地使用上述内存分析工具和最佳实践,你可以有效地定位和解决Python应用程序中的内存泄漏问题。初步确认内存问题:使用系统监控工具(如Task Manager、htop)观察内存使用是否异常增长。逐步深入分析使用进行逐行内存使用分析,找出内存增量较大的代码行。使用跟踪内存分配,找出具体的内存分配热点。使用objgraph分析对象引用关系,找出未被释放的对象。使用guppy3进行详细的内存分布分析,了解各类对象占用的内存比例。优化代码使用弱引用管理缓存,避免引用导致的内存泄漏。原创 2024-11-19 17:47:10 · 873 阅读 · 0 评论 -
内存泄漏和QPixmap字段
通过引入和类,你可以有效地管理QPixmap对象的生命周期,防止内存泄漏问题。同时,确保在所有涉及到图片加载和显示的地方都使用来获取QPixmap对象,从而实现内存的自动管理和优化。原创 2024-11-19 17:37:12 · 874 阅读 · 0 评论 -
Python内存泄漏分析和弱引用
弱引用是一种不增加对象引用计数的引用方式。通过weakref模块,可以创建对象的弱引用。当对象的强引用计数降为零时,垃圾回收机制会自动回收对象,即使存在弱引用。定期监控:在开发过程中,定期使用内存分析工具监控内存使用,及时发现潜在问题。合理管理引用:使用弱引用管理不需要长期持有的对象,避免引用导致的内存泄漏。资源管理:使用上下文管理器和适当的资源释放机制,确保资源被正确回收。代码审查:定期进行代码审查,关注对象的生命周期和引用关系,避免不必要的循环引用。原创 2024-11-19 17:26:17 · 1160 阅读 · 0 评论 -
Scipy和sklearn的功能,pandas和keras等等
是一个开源的 Python 机器学习库,建立在 NumPy、SciPy 和 matplotlib 之上。它提供了简单高效的工具,用于数据挖掘和数据分析,适用于各种机器学习任务,广泛应用于学术研究和工业项目中。支持向量机(SVM)原理:通过在高维空间中寻找一个最佳分隔超平面,将不同类别的数据分开。适用场景:文本分类、图像分类、医学诊断等。随机森林(Random Forest)原理:集成多棵决策树,通过投票机制决定最终分类结果。适用场景:样本数量多且特征维度高的数据集,如金融风险评估、股票预测等。原创 2024-11-17 22:40:19 · 885 阅读 · 0 评论