
探针和计算机基础
文章平均质量分 66
介绍探针和计算机的基础内容。支持过百的计算机的参数等等分析说明。
源代码分析
这个作者很懒,什么都没留下…
展开
-
最适合nuitka打包的模块
https://jwndv2g391c.feishu.cn/wiki/ZQlxw2XBhiUTelkYL8DcPr6Gn2d nuitka编译软件。原创 2024-11-22 11:51:15 · 174 阅读 · 0 评论 -
使用caddy和vaultwarden 创建自己的密码管理
我来帮你配置 Caddy 作为反向代理服务器,并自动申请 SSL 证书。Vaultwarden 的 API 确实推荐使用 HTTPS,因为它传输敏感数据。现在你可以通过 https://vw.dlink.bid 安全地访问 Vaultwarden。确保域名 vw.dlink.bid 已正确解析到你的服务器 IP。创建 Caddyfile 文件并写入上述配置。原创 2024-11-21 14:53:15 · 361 阅读 · 0 评论 -
ansible-inventory
是一个非常有用的工具,能够帮助用户快速查看和管理 Ansible 的配置选项。通过合理使用这些命令,用户可以更好地理解和控制 Ansible 的行为。原创 2024-11-21 11:39:30 · 425 阅读 · 0 评论 -
matplotlib的GUI方式和非GUI方式带来的内存泄漏问题
matplotlib是一个用于创建静态、动画和交互式可视化的绘图库,而 tkinter则是Python标准的GUI工具包,用于创建桌面应用程序的窗口、按钮等界面元素。matplotlib 的后端修改后,直接就不出现内存持续增长的情况了。使用 tk 后端时,matplotlib 会与 PySimpleGUI 中使用的 tkinter 进行冲突,导致资源管理混乱,最终引发内存泄漏。谨慎选择后端: 在使用 matplotlib 时,要根据实际需求选择合适的 backend,避免不必要的依赖关系。原创 2024-11-21 10:32:03 · 513 阅读 · 0 评论 -
Pywin32的计划任务和坑点
【代码】Pywin32的计划任务和坑点。原创 2024-11-21 10:29:49 · 285 阅读 · 0 评论 -
内存泄漏问题小结
上面两段代码,会有5个字节的泄露,因为字符串和切片的两个变量,底层是共享内存的。这个场景,如果在高并发,并且数据够大的情况下,就算是临时的泄露,也可能对性能有极大的影响。以上代码,之所以会造成内存泄露。是因为time.After的底层是实现了一个timer,只要定时器未到时间,这个定时器就不会被gc回收,从而造成临时的内存泄露。结构使用不当也是开发中常见的,只是可能并发不高,或者内存泄露的不多,导致使用者容易忽视掉。持续增长的常驻协程,申请了大量内存空间,由于是常驻的协程,不会释放内存造成泄露。原创 2024-11-21 10:14:43 · 309 阅读 · 0 评论 -
内存分析管理功能-弱引用和内存清理
【代码】内存分析管理功能-弱引用和内存清理。原创 2024-11-21 10:03:15 · 277 阅读 · 0 评论 -
可能重复的初始化错误
这些改进可以帮助减少内存使用并提高程序效率。建议在程序退出时适当清理资源。原创 2024-11-21 09:30:14 · 356 阅读 · 0 评论 -
内存泄漏分析-弱引用
在Python中进行内存分析以检测内存泄漏或内存持续增长的问题,是确保应用程序稳定性和性能的重要步骤。以下是详细的指南,涵盖内存分析的工具、流程以及弱引用在处理图片时的应用。一、内存泄漏与内存增长的区别● 内存泄漏(Memory Leak):指程序中不再需要的对象由于引用关系没有被正确释放,导致这些对象无法被垃圾回收机制回收,从而占用内存。● 内存持续增长:不一定是内存泄漏,可能是由于程序持续产生新数据而没有及时清理旧数据,导致内存占用不断增加。二、Python中常用的内存分析工具。原创 2024-11-20 17:44:31 · 827 阅读 · 0 评论 -
内存泄漏调试
遇到这个问题,首先要弄清楚内存里面,到底存储了哪些类型的数据。从后面的输出结果,可以看到ObservationList和IdentityPartitionCluster一直在持续增长,但是只能看到数量,并不能看到占用内存的数据大小和内容。可以明显得看到是django的问题,后来上网查了下django内存泄漏,原来是因为django在debug模式下,会保存每一次的sql语句。references = heap[0].byvia # byvia返回该对象的被哪些引用, heap[0]是内存消耗最大的对象。原创 2024-11-20 10:52:35 · 622 阅读 · 0 评论 -
内存分析详细说明
下面我将整合多个内存分析工具,创建一个更全面的分析装饰器系统。这个系统将包含 memory_profiler、line_profiler、guppy3 和自定义的内存跟踪器,并将所有结果输出到日志文件中。原创 2024-11-19 18:03:51 · 328 阅读 · 0 评论 -
内存分析装饰器的实现-日志系统-内存泄漏-内存分析
我将帮你设置一个完整的日志系统来记录内存分析的结果。原创 2024-11-19 18:00:15 · 184 阅读 · 0 评论 -
内存泄漏如何分析(Python版本)
通过系统地使用上述内存分析工具和最佳实践,你可以有效地定位和解决Python应用程序中的内存泄漏问题。初步确认内存问题:使用系统监控工具(如Task Manager、htop)观察内存使用是否异常增长。逐步深入分析使用进行逐行内存使用分析,找出内存增量较大的代码行。使用跟踪内存分配,找出具体的内存分配热点。使用objgraph分析对象引用关系,找出未被释放的对象。使用guppy3进行详细的内存分布分析,了解各类对象占用的内存比例。优化代码使用弱引用管理缓存,避免引用导致的内存泄漏。原创 2024-11-19 17:47:10 · 873 阅读 · 0 评论 -
详细介绍LSM
总的来说,LSM树通过将随机写转化为顺序写,极大地提高了写入性能,是一种在大数据量、高写入负载场景下非常有效的数据结构。好的,我来为您详细介绍LSM(Log-Structured Merge-Tree)。LSM树是一种用于大规模数据存储系统的数据结构和算法。原创 2024-10-15 16:41:23 · 529 阅读 · 0 评论 -
Istio的服务发现
这样,当服务 A 需要与服务 B 通信时,服务 A 的 Sidecar 代理就知道如何通过服务发现找到服务 B 的实例。虽然 Istio 的服务发现机制是自动的,但如果你想在 Go 应用中直接与 Kubernetes API 交互以实现类似的服务发现功能,可以使用 Kubernetes 的客户端库。Pilot 会监控 Kubernetes 的 API,获取服务和 Pod 的信息,然后生成相应的配置给每个服务的 Sidecar 代理(Envoy)。这个过程是自动的,对于服务 A 来说是透明的。原创 2024-09-23 23:17:26 · 1129 阅读 · 0 评论 -
详细介绍ZFS的缓存系统
在没有专用 SLOG 设备的情况下,ZIL 会存储在池中的常规 VDEV 上,这可能会影响性能,因为同步写操作需要立即完成。● 性能优化:通过将 ZIL 日志存储在专用的高速设备上(如 SSD),SLOG 可以显著减少写入延迟,提高同步写操作的性能。● 缓存选择:L2ARC 不会缓存所有数据,而是根据一定的算法(如最近最少使用、频率等)选择热数据或最近被逐出的数据。● 设备选择:选择高耐久性的 SSD 作为 SLOG 设备,因为 ZIL 的写入操作频繁,对设备的耐用性要求较高。原创 2024-09-17 20:27:44 · 1314 阅读 · 0 评论 -
网络的流量指标
在网络运维开发中,探针是收集网络性能和健康状况数据的重要工具。原创 2024-09-17 20:10:37 · 1160 阅读 · 0 评论 -
存储系统的指标-不少于100种
这些指标可以通过各种Linux命令和工具来收集,如df, du, iostat, iotop, fio, nfsiostat, smbtop等。此外,还可以使用监控系统(如Prometheus, Nagios, Zabbix等)来自动收集和分析这些指标,以便及时发现和解决存储系统的问题。a. NFS/CIFS操作延迟 (NFS/CIFS operation latency)c. NFS/CIFS写入吞吐量 (NFS/CIFS write throughput)原创 2024-09-17 18:03:28 · 760 阅读 · 0 评论 -
CPU探针和监控指标事项(不少于100种)
非常好,让我们更深入地探讨Linux系统中的CPU监控指标,包括一些Linux特有的概念和关键点:CPU使用率(CPU Utilization)在/proc/stat文件中可以找到包括user、nice、system、idle、iowait、irq、softirq等状态使用top或htop命令可以实时查看负载平均值(Load Average)通过/proc/loadavg文件或uptime命令查看显示1分钟、5分钟和15分钟的平均负载理想情况下应小于CPU核心数。原创 2024-09-17 16:59:09 · 1888 阅读 · 0 评论