
架构/三高
文章平均质量分 70
源代码分析
这个作者很懒,什么都没留下…
展开
-
检测CPU状态和重启应用
希望以上信息对你有帮助!请根据你的具体需求选择合适的方法。原创 2024-12-22 14:23:22 · 937 阅读 · 0 评论 -
测试工具开发工具量
您说的很对,编写网络模拟器进行测试虽然不直接体现在最终交付系统的功能或性能指标中,但它是保障系统质量、验证高并发性能的重要手段,并且确实需要投入开发资源。因此,我们需要在文档中清晰地阐述这部分工作内容、工作量和重要性,以便让老板了解并认可这部分投入。原创 2024-12-22 13:36:49 · 750 阅读 · 0 评论 -
Sonic和高性能json库-多json的性能库的对比
对每个不同的数据结构分别调用:确保每个类型都经过预热,以充分利用sonic的性能优化。统一管理sonic配置:通过全局变量或其他方式统一管理sonic的配置,确保整个项目中 JSON 操作的配置一致性。避免命名冲突:使用不同的变量名(如jsonAPI)来引用自定义的sonic配置,避免与其他 JSON 库发生命名冲突。通过上述方法,您可以高效地使用sonic库处理多个不同的数据结构,并充分利用Pretouch的性能优化功能。如果在实施过程中遇到其他问题或有进一步的疑问,欢迎随时提问!原创 2024-12-22 12:10:03 · 552 阅读 · 0 评论 -
Sonic和Pretouch-高性能json库
对每个不同的数据结构分别调用:确保每个类型都经过预热,以充分利用sonic的性能优化。统一管理sonic配置:通过全局变量或其他方式统一管理sonic的配置,确保整个项目中 JSON 操作的配置一致性。避免命名冲突:使用不同的变量名(如jsonAPI)来引用自定义的sonic配置,避免与其他 JSON 库发生命名冲突。通过上述方法,您可以高效地使用sonic库处理多个不同的数据结构,并充分利用Pretouch的性能优化功能。如果在实施过程中遇到其他问题或有进一步的疑问,欢迎随时提问!原创 2024-12-22 11:25:44 · 974 阅读 · 0 评论 -
Sonic最佳实践-拷贝字符串-预热
库,在提高性能的同时,避免潜在的内存问题。你需要根据你的应用程序的具体情况来决定是否采用这些最佳实践。库在处理 JSON 字符串时的一些性能优化和潜在的内存使用问题,以及如何通过。选项来解决这些问题。这两个最佳实践都是为了帮助你更好地使用。原创 2024-12-22 10:55:17 · 563 阅读 · 0 评论 -
背压机制-缓冲区-内存泄漏和内存增长
背压是一种流量控制机制,用于处理生产者生产数据的速度超过消费者处理速度的情况。就像水管中的压力调节阀一样,当下游处理能力不足时,会向上游传递压力,降低数据生产速度。背压机制是构建稳定、可靠系统的重要组成部分,合理使用可以有效防止系统过载和崩溃。原创 2024-12-21 19:55:53 · 265 阅读 · 0 评论 -
Go语言-内存雪崩-内存增长-并发稳定性
这些优化措施可以有效防止内存泄漏和内存雪崩,提高程序的并发性能和稳定性。建议根据实际业务场景选择合适的优化方案进行实施。原创 2024-12-21 19:52:54 · 325 阅读 · 0 评论 -
pprof的go语言下的用法
这些工具和命令可以帮助你找出程序中的内存泄漏和性能瓶颈。建议在开发和测试环境中经常使用这些工具进行分析。原创 2024-12-21 19:42:17 · 267 阅读 · 0 评论 -
pprof的使用-Go语言内存分析和cpu分析
的别名,这是因为我们只需要它的副作用(注册 pprof 的 HTTP 路由),而不需要直接使用它的任何导出函数或变量。希望这些信息能帮助你使用 pprof 分析你的程序的性能,并找到内存积压问题的原因!好的,以下是如何在你的代码中使用 pprof 进行性能分析的示例,以及如何解读 pprof 生成的报告。这个命令会收集 30 秒的 CPU 性能数据,并进入 pprof 的交互式命令行界面。这个命令会收集当前的堆内存使用情况,并进入 pprof 的交互式命令行界面。这个命令会收集互斥锁争用的性能数据。原创 2024-12-21 18:22:48 · 773 阅读 · 0 评论 -
五个信号量和go语言
想要进入房间(开始处理数据)之前,都需要先检查房间里是否有空座位(获取信号量)。离开房间(完成数据处理)时,它会让出一个座位(释放信号量),这样其他等待的。希望这个详细的解释能够帮助你理解这部分代码的工作原理!想象成一个有 5 个座位的房间。数量不会超过 5,从而避免了过多的。就需要在门口等待(阻塞)。导致的资源竞争和内存增长问题。这样就保证了同时处理数据的。好的,我来详细解释一下在。原创 2024-12-20 20:51:58 · 319 阅读 · 0 评论 -
使用忙等待减少使用time的方式,加上减少Goroutine达到6000到10000的tcp发包
请根据你的实际环境进行测试和调整,以达到最佳性能。的最小休眠时间取决于操作系统,通常在毫秒级别。这意味着即使我们计算出的休眠时间非常短,实际休眠时间也可能远大于预期,导致发送频率无法达到 2500Hz。尽管我们使用了多个 Goroutine 来并发发送数据,但 Goroutine 的调度本身也存在开销。在高频发送的场景下,调度开销可能会成为性能瓶颈。我们可以尝试减少 Goroutine 的数量,以降低调度开销。减少到 4,以降低 Goroutine 调度的开销。很抱歉,之前的修改没有达到预期的效果。原创 2024-12-20 20:32:36 · 337 阅读 · 0 评论 -
zeromq的运行环境指定
与 Go 语言中使用 ZeroMQ 类似,首先需要安装 C 库。是对 C 库的封装,它通过 C 接口与底层的 libzmq 库进行交互。如果程序正常运行并输出 “Sent ‘Hello’”,则说明安装成功。希望以上信息能够帮助你在 Python 中成功使用 ZeroMQ!是的,在 Python 中使用 ZeroMQ(通常通过。安装完 libzmq 后,可以使用。原创 2024-12-20 14:55:29 · 352 阅读 · 0 评论 -
消息队列系统
有的,除了 ZeroMQ 之外,还有许多其他优秀的消息队列系统可供选择。希望以上信息对你有所帮助!请根据你的实际应用场景和需求,选择最合适的消息队列系统。原创 2024-12-20 14:52:24 · 756 阅读 · 0 评论 -
zeroMQ缓存数据处理等
总而言之, 在使用 ZeroMQ 时,你需要根据你的具体需求和消息模式来决定如何处理没有接收者的情况,并进行相应的配置。ZeroMQ 在没有数据接收者(即没有连接的客户端或订阅者)时,数据的处理方式取决于你使用的。原创 2024-12-20 11:42:31 · 449 阅读 · 0 评论 -
高频信息和日志打印
ZeroMQ 通过异步处理、批量处理、减少 I/O 操作、高效的通信机制等方式,降低了消息输出的 CPU 耗时和资源占用。特别是在高并发、大数据量的场景下,ZeroMQ 的优势更加明显。总而言之,如果你需要一个高效、灵活的消息输出方式,并且需要将数据发送到远程服务器,那么 ZeroMQ 是一个不错的选择。如果只是简单的本地日志记录,传统的日志库可能更加方便。是的,与传统的日志记录或打印方式相比,ZeroMQ(ZMQ)作为一种消息队列系统,在输出数据时通常具有更低的 CPU 耗时和资源占用。原创 2024-12-20 11:39:09 · 304 阅读 · 0 评论 -
Java的低延迟的方法
所以如果需要纳秒级延迟,建议使用Rust或C++。如果对延迟要求在微秒级别,优化后的Java是可以满足要求的。原创 2024-12-19 13:46:26 · 389 阅读 · 0 评论 -
开源项目的特性移植和代码修复-需要全职4-6周-兼职x3为12周到18周开源修复真是吃力不讨好。
这个时间估计是基于有一定编程经验的开发者。对于特定领域的专家可能会更快,而新手可能需要更长时间。原创 2024-12-19 13:41:25 · 338 阅读 · 0 评论 -
高频交易用Go写指标多少会有什么问题-毫秒级别和纳秒级别
需要注意的是,这些数字会随着技术进步不断提升,而且不同市场和不同交易所的要求也会有所不同。在实际应用中,往往需要根据具体情况来优化系统性能。综合来说,Go 适合作为高频交易系统的一部分,但超低延迟的核心路径最好使用其他技术方案。原创 2024-12-19 12:39:35 · 550 阅读 · 0 评论 -
高频交易用Go写指标多少会有什么问题
需要注意的是,这些数字会随着技术进步不断提升,而且不同市场和不同交易所的要求也会有所不同。在实际应用中,往往需要根据具体情况来优化系统性能。原创 2024-12-19 12:34:53 · 134 阅读 · 0 评论 -
超时控制和低延迟和写法不一样的地方
函数可以被极大地简化,甚至可以完全移除。无论选择哪种方案,关键在于理解当前的优化策略以及每个函数的作用。包含超时控制,以防止单个数据点的处理时间过长。但在当前的优化策略下,我们通过批量处理来控制处理时间,因此不再需要针对单个数据点的超时控制。中添加其他逻辑(例如,错误处理、日志记录等),那么保留这个函数可以提供一些灵活性。函数在可预见的未来不太可能需要添加其他逻辑,那么内联调用可以使代码更简洁。函数可以被极大地简化,甚至可以完全移除,并将。是的,你的理解是正确的。在当前的优化策略下,在当前的优化策略下,原创 2024-12-19 11:11:50 · 220 阅读 · 0 评论 -
锁-原子操作-批量操作
假设每个数据点的处理时间为 t,那么处理 250 个数据点的时间为 250t。这意味着只要单个数据点的处理时间小于 0.16 微秒,我们就能满足 40 微秒内处理 250 个数据点的要求。由于我们已经将大部分处理逻辑移到了批处理中,并且使用了原子操作和更细粒度的锁,单个数据点的处理时间很有可能小于 0.16 微秒。函数现在只处理当前批次中的数据,而不是所有通道的数据。函数中移除了不必要的超时控制,因为批量处理已经隐含了时间上的控制。将单个数据点的处理改为批量处理,这是最主要的优化手段。锁的粒度现在更细了。原创 2024-12-19 11:05:47 · 306 阅读 · 0 评论 -
软件开发的管理模型-迭代/瀑布/原型
以上只是一些常见的软件开发管理类型,实际上还有很多其他的类型和方法。选择哪种类型取决于项目的具体需求、团队的实际情况以及组织的文化等因素。这些思路和方法各有侧重,可以根据项目的具体情况选择合适的方法。在实际应用中,往往会结合多种方法来管理软件开发项目,以达到最佳的效果。重要的是要不断学习和探索新的方法,并根据实际情况灵活运用,持续改进和优化软件开发过程。软件开发的管理类型有很多种,每种类型都有其自身的优点和缺点,选择哪种类型取决于项目的具体需求和团队的实际情况。原创 2024-12-17 15:21:52 · 1019 阅读 · 0 评论 -
Python的并行运算库
还有其他一些库和方法可以实现类似的效果,或者在某些情况下提供绕过 GIL 的替代方案。这些库和方法各有优缺点,选择哪一个取决于具体的应用场景和需求。例如,如果需要简单的并行化循环,库通过创建多个进程来绕过全局解释器锁(GIL),从而实现真正的并行计算。如果需要处理大数据集或构建复杂的分布式系统,如果需要加速数值计算,原创 2024-12-17 14:49:52 · 329 阅读 · 0 评论 -
共享内存和GPRC的QPS/性能差别
共享内存和 gRPC 在 QPS(每秒查询率)方面的对比以及性能差距会受到多种因素的影响,例如硬件环境、网络状况、数据大小、服务逻辑复杂度等。因此,很难给出一个绝对的数值对比,只能说出一个大致的范围和趋势。在选择通信方式时,需要综合考虑性能、可扩展性、开发成本、维护成本等因素。建议在实际项目中进行基准测试,以获得更准确的性能数据。原创 2024-12-17 10:26:04 · 563 阅读 · 0 评论 -
软件开发的类型-软件项目管理
确定软件的功能指标和性能指标是一个迭代的过程,需要不断地与用户沟通、评审和修改。只有充分理解用户需求,才能制定出合理的指标,从而确保软件项目的成功。同时,也需要考虑技术的可行性和成本的控制,在满足用户需求和项目预算之间找到一个平衡点。在招投标过程中,软件的功能指标和性能指标的确定是一个关键环节,它直接关系到最终交付的软件是否能够满足用户的实际需求。组织相关人员(包括用户、开发人员、测试人员等)对需求规格说明书进行评审,确保需求的正确性、完整性和可行性。原创 2024-12-17 10:15:37 · 845 阅读 · 0 评论 -
软件功能指标和性能指标怎么确定的
确定软件的功能指标和性能指标是一个迭代的过程,需要不断地与用户沟通、评审和修改。只有充分理解用户需求,才能制定出合理的指标,从而确保软件项目的成功。同时,也需要考虑技术的可行性和成本的控制,在满足用户需求和项目预算之间找到一个平衡点。在招投标过程中,软件的功能指标和性能指标的确定是一个关键环节,它直接关系到最终交付的软件是否能够满足用户的实际需求。组织相关人员(包括用户、开发人员、测试人员等)对需求规格说明书进行评审,确保需求的正确性、完整性和可行性。原创 2024-12-17 10:08:15 · 823 阅读 · 0 评论 -
三高系统构建难度
这通常是资深工程师和架构师面临的挑战。这也是为什么有经验的架构师和工程师在市场上非常抢手的原因。是的,构建高性能、高并发、高可用的系统。原创 2024-12-17 09:57:25 · 458 阅读 · 0 评论