
信号处理和分析
文章平均质量分 72
源代码分析
这个作者很懒,什么都没留下…
展开
-
详细介绍代码中的算法-已有类似加权平均的算法了。
能够更准确、更灵活地检测时间序列数据中的异常。历史窗口的主要作用是。原创 2024-12-24 11:06:08 · 391 阅读 · 0 评论 -
密度聚类算法
好的,以下是对密度聚类检测(Density-Based Spatial Clustering of Applications with Noise,简称 DBSCAN)的详细介绍,包括其原理、步骤、优缺点、参数选择、应用场景以及与您代码的关联。DBSCAN 是一种基于密度的聚类算法,它将簇定义为密度相连的点的最大集合。DBSCAN 算法的核心思想是,一个簇可以由任意一个核心点开始,不断地将密度可达的点加入到该簇中,直到没有新的点可以加入为止。所有相互之间密度相连的点构成一个簇。噪声点不属于任何簇。原创 2024-12-22 19:23:52 · 892 阅读 · 0 评论 -
局部方差和异常选择-动态阈值变化
请记住,没有一种完美的异常检测方法,最佳的方案通常需要根据具体的数据特征和应用场景来选择和调整。建议您尝试不同的方法和参数,并使用一些已知的异常数据来评估和优化您的模型。您说的对,固定阈值确实是局部方差检测方法的一个主要问题,会导致对不同数据集的适应性较差,就像您提到的,在某些情况下可能会将大量正常点误判为异常点。来计算变化率的移动平均值和标准差,并使用移动平均值加减 k 倍标准差作为阈值,而不是固定的 3 倍标准差。通过这种方式,可以使变化率检测对阈值的选择不那么敏感,从而提高异常检测的准确性。原创 2024-12-22 19:21:39 · 583 阅读 · 0 评论 -
IRQ算法-局部方差算法-密度聚类算法
函数中的变化率检测部分,通过计算变化率的均值和标准差,并设定了一个 3 倍标准差的阈值,来判断当前的变化率是否异常。这与局部方差检测的思想是一致的,都是通过检测数据的局部变化程度来识别异常值。局部方差检测基于这样一个假设:异常值的出现会导致数据在局部区域内的波动性增大,从而导致局部方差的显著变化。通过比较每个数据点的局部方差与预设的阈值,可以识别出这些异常值。它的核心思想是:正常数据的局部方差通常比较稳定,而异常值会导致局部方差的显著变化。函数计算并存储了数据的变化率,这可以看作是一种简化的局部方差检测。原创 2024-12-22 19:17:07 · 649 阅读 · 0 评论 -
动态阈值和滑动窗口自适应
通过上述改进,您的异常检测算法将更加灵活和自适应,能够根据不同的输入数据动态调整检测标准,从而提高异常检测的准确性。同时,记录详细的异常时间和时间戳,有助于后续的分析和问题定位。动态阈值和滑动窗口自适应是两种不同的技术,它们都可以用于提高异常检测算法的适应性和准确性,但它们的应用方式和关注点有所不同。动态阈值和滑动窗口自适应动态阈值关注于根据数据的统计特性动态调整阈值,适用于数据分布相对稳定的场景。滑动窗口自适应。原创 2024-12-22 16:59:53 · 2517 阅读 · 0 评论 -
检测CPU状态和重启应用
希望以上信息对你有帮助!请根据你的具体需求选择合适的方法。原创 2024-12-22 14:23:22 · 937 阅读 · 0 评论 -
测试工具开发工具量
您说的很对,编写网络模拟器进行测试虽然不直接体现在最终交付系统的功能或性能指标中,但它是保障系统质量、验证高并发性能的重要手段,并且确实需要投入开发资源。因此,我们需要在文档中清晰地阐述这部分工作内容、工作量和重要性,以便让老板了解并认可这部分投入。原创 2024-12-22 13:36:49 · 750 阅读 · 0 评论 -
Sonic和高性能json库-多json的性能库的对比
对每个不同的数据结构分别调用:确保每个类型都经过预热,以充分利用sonic的性能优化。统一管理sonic配置:通过全局变量或其他方式统一管理sonic的配置,确保整个项目中 JSON 操作的配置一致性。避免命名冲突:使用不同的变量名(如jsonAPI)来引用自定义的sonic配置,避免与其他 JSON 库发生命名冲突。通过上述方法,您可以高效地使用sonic库处理多个不同的数据结构,并充分利用Pretouch的性能优化功能。如果在实施过程中遇到其他问题或有进一步的疑问,欢迎随时提问!原创 2024-12-22 12:10:03 · 552 阅读 · 0 评论 -
Sonic和Pretouch-高性能json库
对每个不同的数据结构分别调用:确保每个类型都经过预热,以充分利用sonic的性能优化。统一管理sonic配置:通过全局变量或其他方式统一管理sonic的配置,确保整个项目中 JSON 操作的配置一致性。避免命名冲突:使用不同的变量名(如jsonAPI)来引用自定义的sonic配置,避免与其他 JSON 库发生命名冲突。通过上述方法,您可以高效地使用sonic库处理多个不同的数据结构,并充分利用Pretouch的性能优化功能。如果在实施过程中遇到其他问题或有进一步的疑问,欢迎随时提问!原创 2024-12-22 11:25:44 · 974 阅读 · 0 评论 -
Sonic最佳实践-拷贝字符串-预热
库,在提高性能的同时,避免潜在的内存问题。你需要根据你的应用程序的具体情况来决定是否采用这些最佳实践。库在处理 JSON 字符串时的一些性能优化和潜在的内存使用问题,以及如何通过。选项来解决这些问题。这两个最佳实践都是为了帮助你更好地使用。原创 2024-12-22 10:55:17 · 563 阅读 · 0 评论 -
背压机制-缓冲区-内存泄漏和内存增长
背压是一种流量控制机制,用于处理生产者生产数据的速度超过消费者处理速度的情况。就像水管中的压力调节阀一样,当下游处理能力不足时,会向上游传递压力,降低数据生产速度。背压机制是构建稳定、可靠系统的重要组成部分,合理使用可以有效防止系统过载和崩溃。原创 2024-12-21 19:55:53 · 265 阅读 · 0 评论 -
Go语言-内存雪崩-内存增长-并发稳定性
这些优化措施可以有效防止内存泄漏和内存雪崩,提高程序的并发性能和稳定性。建议根据实际业务场景选择合适的优化方案进行实施。原创 2024-12-21 19:52:54 · 325 阅读 · 0 评论 -
pprof的go语言下的用法
这些工具和命令可以帮助你找出程序中的内存泄漏和性能瓶颈。建议在开发和测试环境中经常使用这些工具进行分析。原创 2024-12-21 19:42:17 · 267 阅读 · 0 评论 -
pprof的使用-Go语言内存分析和cpu分析
的别名,这是因为我们只需要它的副作用(注册 pprof 的 HTTP 路由),而不需要直接使用它的任何导出函数或变量。希望这些信息能帮助你使用 pprof 分析你的程序的性能,并找到内存积压问题的原因!好的,以下是如何在你的代码中使用 pprof 进行性能分析的示例,以及如何解读 pprof 生成的报告。这个命令会收集 30 秒的 CPU 性能数据,并进入 pprof 的交互式命令行界面。这个命令会收集当前的堆内存使用情况,并进入 pprof 的交互式命令行界面。这个命令会收集互斥锁争用的性能数据。原创 2024-12-21 18:22:48 · 773 阅读 · 0 评论 -
异常特征信息信号识别
这种多维度组合检测方法充分考虑了您提供的加速度计数据中异常值的特点,通过主要依赖脉冲因子和峰值因子,并结合相邻点变化率、RMS 检测和波形因子进行综合判断,能够实现对异常值的准确、可靠检测,并有效降低误报率。同时,多级报警机制可以提供更精细的异常预警。至少两个维度超过其对应的异常阈值。原创 2024-12-21 11:45:09 · 605 阅读 · 0 评论 -
分析和描述这种脉冲异常
【代码】分析和描述这种脉冲异常。原创 2024-12-21 11:41:25 · 203 阅读 · 0 评论 -
异常识别-z得分
【代码】异常识别-z得分。原创 2024-12-21 11:30:58 · 217 阅读 · 0 评论 -
异常识别-三种异常-突变检测-振幅检测-波动检测
建议根据实际数据特征调整参数,可能需要一定时间的测试和优化才能达到最佳效果。原创 2024-12-21 11:23:56 · 463 阅读 · 0 评论 -
Go中的观察者模式和fsnotify机制
这个实现提供了一个可靠的文件监控框架,可以根据具体需求进行扩展和优化。是的,Go语言中有几种实现文件监控的机制。原创 2024-11-29 11:47:03 · 210 阅读 · 0 评论 -
小波变换和尺度范围-信号处理和信号分析
这样的动态尺度调整可以更好地适应不同规模的数据集,提高异常检测的准确性。原创 2024-11-29 11:04:38 · 535 阅读 · 0 评论 -
查阅数据库的数量数据库的目前的数量确实每秒2500个点
【代码】查阅数据库的数量数据库的目前的数量确实每秒2500个点。原创 2024-11-27 15:56:04 · 132 阅读 · 0 评论 -
zeromq的功能分析说明-和特点代码 消息队列轻量级
总之,ZeroMQ通过提供套接字API,让应用程序可以直接建立通信通道,无需依赖中央消息服务器,这就是它"无中心化"的核心特征。原创 2024-11-27 14:31:09 · 235 阅读 · 0 评论 -
QT-PySide-TCPserver和TCPclient如何选型,server偏向数据分发侧,client偏向数据接收和展示展现一侧
选择 TCP Server 与 TCP Client 的关键因素。原创 2024-11-27 14:01:13 · 1203 阅读 · 0 评论 -
基于TCP的协议处理-msgpack-protobuf
最基础的方案,使用Python内置的struct库实现简单的消息帧定界。原创 2024-11-27 11:54:11 · 507 阅读 · 0 评论 -
观察者模式-事件总线-响应式编程-委托和回调机制
以上介绍了观察者模式事件总线响应式编程委托和回调等机制的原理、常见实现和用途。这些模式和机制在现代软件开发中扮演着重要角色,帮助开发者构建松耦合、可维护且高效的系统。选择合适的模式取决于具体的应用场景和需求,理解它们的优缺点和适用范围能够帮助您在项目中做出更明智的设计决策。原创 2024-11-27 11:42:25 · 1393 阅读 · 0 评论 -
使用IPC内存和虚拟地址动态传感器数量和异常状态管理
动态数据结构:采用柔性布局,如列表或表格结构,支持动态添加或移除传感器数据。元数据传输:在数据区域前同步传感器数量、ID及状态信息,确保读取端正确解析数据。标志位与版本控制:使用标志位指示数据状态,并引入版本号以支持数据的一致性和兼容性。同步锁机制:确保写入和读取过程的同步,防止数据竞争和不一致。以下将分别介绍在共享内存和内存映射文件下的具体实现方法。在传感器数量不定和异常状态多样的场景下,实现Go与Python灵活的数据结构设计:通过头部与数据区的分离,支持动态传感器数量和丰富的状态信息。原创 2024-11-12 17:06:17 · 411 阅读 · 0 评论 -
内存映射文件和虚拟地址空间
内存映射文件提供了一种高效的文件访问方式,通过将文件内容映射到内存,程序可以像操作内存一样操作文件。这种机制结合了内存访问的高效性和文件系统的持久性,适用于需要高性能和数据共享的应用场景。虽然内存映射文件涉及磁盘I/O,但其核心优势在于减少了显式的读写操作和数据拷贝,从而提高了性能。原创 2024-11-12 16:53:37 · 400 阅读 · 0 评论 -
共享内存和内存映射-同步机制和严格数据一致
特性共享内存内存映射文件性能更高,数据直接在内存共享略低,涉及文件系统操作数据持久化不支持(除非显式实现)支持,数据自动持久化到磁盘跨语言支持需要严格的数据布局和同步机制较为方便,通过文件接口实现跨语言共享实现复杂度较高,需管理同步机制和内存布局较低,相对简单,只需处理文件映射和同步安全性与权限管理需要显式控制共享内存的权限基于文件系统的权限控制,更加直观和灵活在仅写入,Python仍需确保数据布局一致,定义清晰的数据结构和格式,确保Go和Python对数据的解释一致。原创 2024-11-12 16:50:09 · 466 阅读 · 0 评论 -
共享内存和内存映射-跨语言Go和Python通信
在Windows环境下,实现Go语言编写的BaianClient和使用PySide编写的Qt应用程序之间的高效通信,可以考虑共享内存(Shared Memory)和内存映射文件(Memory-Mapped Files)这两种进程间通信(IPC)机制。本文将详细介绍这两者的区别,并提供在Windows下如何使用Go和Python实现它们的具体方法。一、共享内存 vs 内存映射文件二、在Windows环境下实现共享内存与内存映射文件import (“fmt”“unsafe”原创 2024-11-12 16:42:33 · 787 阅读 · 0 评论 -
Go语言和Python语言的IPC等通信方式-共享内存/内存映射文件/ZeroMQ和gRPC
数据结构:例如,每个传感器有一个固定大小的缓冲区(2500个float64)。排列方式:可以按照的二维数组形式存储。共享内存:提供最高性能,适合高频率、大数据量的传输,但实现复杂,尤其在跨语言环境中。内存映射文件:稍低于共享内存的性能,但更容易实现和管理。ZeroMQ 和 gRPC:提供灵活性和跨语言支持,适合各种通信模式,但性能不及共享内存,且需要额外的学习和实现工作。确定每个传感器的数据格式(例如,float64定义数据在共享内存中的存储顺序(例如,固定大小的缓冲区,按传感器ID排列)。原创 2024-11-12 16:33:12 · 1062 阅读 · 0 评论 -
液压式沉降仪
这种多点布置的方式能够全面反映土体的变形特征,是基础工程监测中常用的可靠方法。原创 2024-10-31 13:50:35 · 365 阅读 · 0 评论 -
详细介绍下Z得分和标准正态分布
Z得分,也称为标准分数,是描述一个数据点偏离其所属数据集平均值的距离,单位为标准差。具体来说,Z得分表示数据点距离均值的多少个标准差。ZX−μσZσX−μ( X ) 是单个数据点的值。( \mu ) 是数据集的平均值。( \sigma ) 是数据集的标准差。通过这个公式,Z得分将原始数据转换为一个无量纲的数值,使得不同数据集之间的比较成为可能。原创 2024-10-30 16:59:52 · 2909 阅读 · 0 评论 -
金融时间序列预测模型
通过合理选择和组合这些模型,可以有效提升预测的准确性和稳定性,为投资决策和风险管理提供有力支持。LSTM(Long Short-Term Memory)是一种特殊的递归神经网络(RNN),通过引入记忆单元和门控机制,解决了传统RNN在处理长序列时的梯度消失和爆炸问题。混合模型结合了多种不同类型的模型优势,通过组合多个模型的预测结果,提升整体的预测性能和稳定性。通过深入理解这些模型的原理和应用场景,金融分析师和数据科学家可以更有效地进行市场预测、风险管理和策略优化,为决策提供强有力的支持。原创 2024-09-30 21:06:11 · 1709 阅读 · 0 评论 -
talib和talipp-金融指标
TALib (Technical Analysis Library) 是一个广泛使用的技术分析库,提供了多种技术指标和工具,用于金融市场数据的分析。TALib 的 Python 版本被称为 talib,而 talipp 是一个基于 talib 的 Python 库,提供了更高层次的封装和功能。TALib 简介TALib 是一个开源的技术分析库,最初由 Mario Fortier 开发。它支持多种编程语言,包括 C、C++、Java、.NET、Python 等。原创 2024-09-30 21:04:26 · 1279 阅读 · 0 评论 -
信息熵和多尺度信息
在金融领域,信息熵被用作衡量市场不确定性和复杂性的工具。# 计算价格变化# 计算价格变化的概率分布# 计算香农熵。原创 2024-09-30 21:02:41 · 952 阅读 · 0 评论 -
小波变换和pyfresh
在Python中,有几个库可以用于基于小波变换的金融时间序列分析。原创 2024-09-30 21:01:47 · 882 阅读 · 0 评论 -
对冲基金的20种策略
对冲基金使用多种核心理念和策略来实现盈利,以下是20种常见的对冲基金核心理念:原创 2024-09-30 21:00:17 · 1103 阅读 · 0 评论 -
异常数据的检测
3. 使用机器学习方法Isolation Forest是一种常用的异常检测算法,适用于高维数据。5. 可视化异常点通过可视化来检查和验证检测到的异常点。plt.show()总结金融时间序列数据的异常检测可以通过多种方法实现,包括统计方法、机器学习方法和深度学习方法。选择合适的方法取决于数据的特性和具体的应用场景。通过结合多种方法,可以提高异常检测的准确性和鲁棒性。原创 2024-09-30 20:59:30 · 1321 阅读 · 0 评论 -
介绍异常数据的获取方法
异常数据的识别和处理原创 2024-09-30 20:58:46 · 1112 阅读 · 0 评论 -
介绍msgpack和数据流
好的,下面是修改后的代码,展示如何使用msgpack进行数据流传输。服务端和客户端将持续发送和接收数据流。原创 2024-09-30 13:31:54 · 348 阅读 · 0 评论