
消息队列
文章平均质量分 57
源代码分析
这个作者很懒,什么都没留下…
展开
-
未优化的数据结构可能导致数据处理速度减慢
根据���提供的代码和描述,内存占用高(3-4GB)的主要���因可以归结为几个方面:数据积压、未优化的数据结构、以及可能的并发处理瓶颈。下面我会详细分析这些问题,并给出相应的解决思路。原创 2024-12-10 08:44:01 · 565 阅读 · 0 评论 -
抽稀算法-等距抽稀-滑动窗口抽稀-Ramer-Douglas-Peucker 算法
抽稀(Data Decimation)是一种数据压缩技术,用于减少数据点的数量同时保持数据的主要特征。原创 2024-12-10 08:36:06 · 536 阅读 · 0 评论 -
抽稀算法-抽稀函数-数据压缩
抽稀(Data Decimation)是一种数据压缩技术,用于减少数据点的数量同时保持数据的主要特征。原创 2024-12-09 18:21:51 · 656 阅读 · 0 评论 -
Proto协议分析grpc判断接口输入和接口输出的方式
/ 1. 请求消息格式// 传感器ID// 数据数组// 时间戳数组// 2. 响应消息格式// 传感器ID// 生成的图片路径// 异常时间点数组// 异常值数组// 3. 服务定义。原创 2024-12-09 13:51:09 · 304 阅读 · 0 评论 -
grpc的延迟和分析说明
【代码】grpc的延迟和分析说明。原创 2024-12-09 13:47:28 · 426 阅读 · 0 评论 -
详细介绍Protoc的分析和功能和分析说明
这个命令是构建 Go gRPC 服务的关键步骤,它将 Protocol Buffers 定义转换为可用的 Go 代码,使得服务器和客户端可以进行类型安全的 RPC 通信。原创 2024-12-09 13:45:18 · 338 阅读 · 0 评论 -
Python和go的混合编程
这样就实现了Go程序调用Python处理数据的功能,既保持了Python代码的独立性,又能获得较好的实时性能。好的,我来帮你实现基于gRPC的Python和Go混合编程方案。需要我详细展开某个部分吗?原创 2024-12-09 10:21:43 · 190 阅读 · 0 评论 -
grpc和消息队列实现特点和难度
因为它能提供更好的实时性,而且实现相对简单。原创 2024-12-09 10:19:15 · 439 阅读 · 0 评论 -
Go和python的混合编程方案-二
通过 cgo 将 Python 代码编译成共享库,直接在 Go 中调用。这种方式性能较好,但实现较为复杂。建议根据实际需求选择最适合的方案,可以从简单的方案开始,随着需求的变化再逐步优化。ZeroMQ 提供了高性能的消息队列功能,适合处理大量数据。使用 Redis 作为数据传输中介,适合分布式环境。适合于同一机器上的进程间通信,实现简单且性能不错。原创 2024-12-09 09:49:39 · 802 阅读 · 0 评论 -
Go和python的混合编程方案
使用 Protocol Buffers 定义服务接口。通过上述方法,您可以在 Go 项目中有效地利用 Python 进行复杂的数据处理,保持代码的可维护性和扩展性。最简单的方法是通过 RESTful API 进行通信,适用于大多数场景。如果需要更高效的通信,可以考虑使用 gRPC。根据具体需求选择合适的混合编程方案,确保系统的稳定性和性能。原创 2024-12-09 09:47:47 · 813 阅读 · 0 评论 -
zeroMQ和消息队列传递-zeromq是个库
ZeroMQ 是一个高性能的异步消息库,提供了多种消息传递模式,包括请求-响应、发布-订阅、推-拉等。ZeroMQ 本身并不是一个消息队列服务器,而是一个库,应用程序可以使用它来实现消息传递。ZeroMQ 的一个特点是它不需要一个持续运行的服务端。相反,ZeroMQ 的节点可以是对等的,任何节点都可以发送和接收消息。ZeroMQ 的设计使得它可以在分布式系统中灵活地使用。原创 2024-12-02 17:45:14 · 222 阅读 · 0 评论