
网络协议
文章平均质量分 72
源代码分析
这个作者很懒,什么都没留下…
展开
-
内存暴涨-状态计算和增量计算
这种方案通过状态向量和增量计算的方式,巧妙地解决了传统方法中的内存暴涨问题,同时通过两级聚合的设计提高了分布式系统的计算效率。原创 2024-12-26 21:09:53 · 402 阅读 · 0 评论 -
Sqlite3的库的优缺点
SQLite3 是一个非常优秀的嵌入式数据库,适用于许多应用场景,特别是那些需要轻量级、易于部署和管理的数据库的场景。然而,对于高并发、需要网络访问或需要高级数据库功能的应用程序,SQLite3 可能不是最佳选择。在选择数据库时,需要���据具体的应用需求进行权衡。SQLite3 ���为一个轻量级、嵌入式的单文件数据库,拥有许多优点,但也存在一些缺点。原创 2024-12-26 13:32:20 · 652 阅读 · 0 评论 -
Rust的高频第三方库-dolphin中的第三方库替代
Rust的高频第三方库-dolphin中的第三方库替代好的。原创 2024-12-25 13:59:34 · 782 阅读 · 4 评论 -
Rust中的基于复杂结构的结构体
好的,以下是一个复杂结构体的示例,它包含了各种不同类型的值,展示了 Rust 结构体在处理复杂数据结构方面的能力:这个 结构体包含以下内容:这个例子展示了如何使用 Rust 的结构体���构建复杂的数据���型。 你可以根据需要添加更多字段、嵌套结构体、枚举和其他类型来构建更复杂的结构体。同时,Rust 的所有权和生命周期机制可以帮助你确保数据的安全性和有效性,避免内存泄漏和数据竞争等问题。好的���以下是一个基于复杂实时数据流计算的结构体示例,它支持多种不同类型的结构体,并使用泛型和 trait 来实原创 2024-12-25 13:19:38 · 332 阅读 · 0 评论 -
复杂的基于时间序列结构的结构体
是一个复杂的结构体,它结合了多种统计方法和因子分析来实现对时间序列数据的多层次、多维度的异常检测。它通过滑动窗口、基线比较、多因子分析和 Level 3 窗口等机制,能够有效地识别出数据中的各种异常模式,并提供详细的异常信息和统计数据。实际大小会因为上述提到的内存对齐、平台差异以及切片容量的不同而有所变化。如果切片预先分配了较大的容量,结构体的实际大小会显著增加。由于切片和结构体的大小在编译时可能不完全确定(特别是切片,其大小取决于其容量),我们只能粗略估计。约 200 + 336 + 240 =原创 2024-12-25 11:26:19 · 580 阅读 · 0 评论 -
zeromq的运行环境指定
与 Go 语言中使用 ZeroMQ 类似,首先需要安装 C 库。是对 C 库的封装,它通过 C 接口与底层的 libzmq 库进行交互。如果程序正常运行并输出 “Sent ‘Hello’”,则说明安装成功。希望以上信息能够帮助你在 Python 中成功使用 ZeroMQ!是的,在 Python 中使用 ZeroMQ(通常通过。安装完 libzmq 后,可以使用。原创 2024-12-20 14:55:29 · 352 阅读 · 0 评论 -
消息队列系统
有的,除了 ZeroMQ 之外,还有许多其他优秀的消息队列系统可供选择。希望以上信息对你有所帮助!请根据你的实际应用场景和需求,选择最合适的消息队列系统。原创 2024-12-20 14:52:24 · 756 阅读 · 0 评论 -
zeroMQ缓存数据处理等
总而言之, 在使用 ZeroMQ 时,你需要根据你的具体需求和消息模式来决定如何处理没有接收者的情况,并进行相应的配置。ZeroMQ 在没有数据接收者(即没有连接的客户端或订阅者)时,数据的处理方式取决于你使用的。原创 2024-12-20 11:42:31 · 449 阅读 · 0 评论 -
高频信息和日志打印
ZeroMQ 通过异步处理、批量处理、减少 I/O 操作、高效的通信机制等方式,降低了消息输出的 CPU 耗时和资源占用。特别是在高并发、大数据量的场景下,ZeroMQ 的优势更加明显。总而言之,如果你需要一个高效、灵活的消息输出方式,并且需要将数据发送到远程服务器,那么 ZeroMQ 是一个不错的选择。如果只是简单的本地日志记录,传统的日志库可能更加方便。是的,与传统的日志记录或打印方式相比,ZeroMQ(ZMQ)作为一种消息队列系统,在输出数据时通常具有更低的 CPU 耗时和资源占用。原创 2024-12-20 11:39:09 · 304 阅读 · 0 评论 -
时间突变检测算法-时间序列突变检测算法
由于您提供的数据是一个时间序列数据,其中包含时间戳、数值1和数值2,我们需要关注的是数值2(即您提到的平均值在2.912附近波动的数据)的突变检测。目标是在波动较小的地方检测出平均值明显高于2.912(如2.918)的异常窗口。由于要求算法简单且平均值在不同样本中可能有所偏移,我们可以采用基于滑动窗口的统计方法。这个基于滑动窗口的算法提供了一个简单而有效的方法来检测您描述的时间序列数据中的突变。您可以根据实际数据的特点和需求,调整算法中的参数以获得最佳的检测效果。原创 2024-12-19 21:21:28 · 219 阅读 · 0 评论 -
光波长的算法题
这个算法题是一个具有挑战性的组合优化问题,需要综合运用图论、资源分配、容错机制等知识来解决。它考察了参赛者在复杂网络环境下进行路由和波长分配的能力,以及处理多故障场景下的服务恢复能力。根据你提供的描述,这个算法题很可能是一个关于。希望以上分析对你有所帮助!原创 2024-12-13 12:51:38 · 253 阅读 · 0 评论 -
SRLG在网络和运维的作用
共享风险链接组(SRLG)是指一组共享相同物理资源的逻辑链路。如果这个共享的物理资源发生故障,那么所有依赖于它的逻辑链路都会受到影响。换句话说,这些链路具有相同的故障风险,因此被认为属于同一个 SRLG。SRLG 是一个重要的网络概念,它可以帮助我们更好地理解网络中的风险,并采取相应的措施来提高网络的可靠性和可用性。希望以上解释能够帮助你理解共享风险链接组(SRLG)的概念和应用。如果你还有其他问题,请随时提出。好的,我来解释一下共享风险链接组(SRLG)的概念及其在实际中的应用。原创 2024-12-13 12:48:03 · 430 阅读 · 0 评论 -
跨语言不同进程间通信-共享内存-内存映射-gRPC-Socket网络协议-消息队列-管道
在需要在 Go 后端程序(mqtt_data_processor.go)和 QT 桌面程序之间传递大量且刷新频繁的数据���������������适的数据传递方式确实至关重要。考虑到 SSD 寿命,避免频繁的磁盘写入是明智的。没有完美的方案,你需要根据你的具体需求进行权衡。如果性能是首要考虑因素,共享内存是最佳选择。如果跨平台是必须的,gRPC 或套接字���������适的选择。���望以上分析对你有所帮助!原创 2024-12-11 17:25:05 · 590 阅读 · 0 评论 -
GRPC和内存积压
在使用 gRPC 进行数据传输和处理时,内存积压(Memory Accumulation)是一个需要关注的重要问题。内存积压指的是服务器端的内存使用量持续增加,最终可能导致内存耗尽(Out of Memory,OOM)或服务崩溃。以下将详细介绍在 gRPC 调用过程中可能导致内存积压的情况及其机制。在使用 gRPC 进行高频率数据传输时,内存积压是一个不可忽视的问题。持久化存储: 使用数据库或其他持久化存储系统,避免依赖纯内存存储。内存限制与数据清理: 设置内存使用上限,实施数据过期或循环缓冲策略。原创 2024-12-11 17:08:37 · 576 阅读 · 0 评论 -
baian_rejson需要增加到mqtt的数据排序的功能。
������,定义一个数据结构来表示每个数据点,包括数据值和潜在的时间戳。Timestamp time.Time // 潜在的时间戳Goroutines:用于并发接收和处理数据。Channels:用于在 goroutine 之间安全地传递数据。:防止数据发送阻塞。Mutex:保护共享资源(排序缓冲区)的并发访问。:对数据进行时间窗口排序,确保按时间顺序处理。这个框架���以根据实际需求进行调整,例如调整缓冲区大小、窗口大小、goroutine 数量等。原创 2024-12-11 15:41:22 · 134 阅读 · 0 评论 -
AppArmor和seccomp等
AppArmor 提供基于路径的访问控制Seccomp 限制系统调用SELinux 提供强制访问控制Capabilities 细分特权资源限制确保公平使用合理配置这些机制可以显著提高系统安全性,但需要根据具体应用场景进行权衡和调整。建议采用"纵深防御"策略,综合使用多种安全机制。AppArmor、Seccomp 以及其他基于权限或路径的访问控制机制,���������了增强系统安全性而设计的。它们通过限制进程的能力,防止恶意������或被攻破的进程对系统造成更大的破坏。原创 2024-12-11 13:52:28 · 787 阅读 · 0 评论 -
Go语言中的一些关键字
Go 语言提供了丰富的工具和机制来进行并发和异步编程。原创 2024-12-11 13:44:19 · 319 阅读 · 0 评论 -
GPRC的用途和可用的作用
gRPC 凭借其高性能、跨平台、多语言支持等优点,在许多场景下都是一个非常好的选择。特别是对于微服务架构、实时通信、云原生应用等场景,gRPC 更是展现出了强大的优势。gRPC 是一个高性能、开源的通用 RPC 框架,由 Google 开发,基于 HTTP/2 协议标准设计开发,默认采用 Protocol Buffers 作为序列化工具。它具有高效、跨平台、多语言支持等优点,适用于各种应用场景。以下是一些 gRPC 常见的使用场景以及分析���������。原创 2024-12-11 13:40:38 · 745 阅读 · 0 评论 -
高性能C++实现
【代码】高性能C++实现。原创 2024-12-11 13:15:49 · 329 阅读 · 0 评论 -
可能的数据包和数据结构类型
从���提供的日志数据来看,这些十六进制数据包遵循一种特定的协议格式���我们可以分析出每个数据包的开头部分,推断出协议字段的���数以���大致的数据结构格式。需要更多信息才能确定具体的协议和数据结构。例如,了解这些数据的来源和用途,或者查看更多不同类型的数据包,可以帮助我们更准确地解析协议。每个数据包的开头几个字节看起来都遵循一定的模式。其他数据包的开头部分也类似,只是具体数值不同。根据上述分析,我们可以推断出协议字段至少有。原创 2024-12-10 17:29:33 · 193 阅读 · 0 评论 -
抽稀算法-等距抽稀-滑动窗口抽稀-Ramer-Douglas-Peucker 算法
抽稀(Data Decimation)是一种数据压缩技术,用于减少数据点的数量同时保持数据的主要特征。原创 2024-12-10 08:36:06 · 536 阅读 · 0 评论 -
抽稀算法-抽稀函数-数据压缩
抽稀(Data Decimation)是一种数据压缩技术,用于减少数据点的数量同时保持数据的主要特征。原创 2024-12-09 18:21:51 · 656 阅读 · 0 评论 -
Proto协议分析grpc判断接口输入和接口输出的方式
/ 1. 请求消息格式// 传感器ID// 数据数组// 时间戳数组// 2. 响应消息格式// 传感器ID// 生成的图片路径// 异常时间点数组// 异常值数组// 3. 服务定义。原创 2024-12-09 13:51:09 · 304 阅读 · 0 评论 -
grpc的延迟和分析说明
【代码】grpc的延迟和分析说明。原创 2024-12-09 13:47:28 · 426 阅读 · 0 评论 -
详细介绍Protoc的分析和功能和分析说明
这个命令是构建 Go gRPC 服务的关键步骤,它将 Protocol Buffers 定义转换为可用的 Go 代码,使得服务器和客户端可以进行类型安全的 RPC 通信。原创 2024-12-09 13:45:18 · 338 阅读 · 0 评论 -
Python和go的混合编程
这样就实现了Go程序调用Python处理数据的功能,既保持了Python代码的独立性,又能获得较好的实时性能。好的,我来帮你实现基于gRPC的Python和Go混合编程方案。需要我详细展开某个部分吗?原创 2024-12-09 10:21:43 · 190 阅读 · 0 评论 -
grpc和消息队列实现特点和难度
因为它能提供更好的实时性,而且实现相对简单。原创 2024-12-09 10:19:15 · 439 阅读 · 0 评论 -
Go和python的混合编程方案-二
通过 cgo 将 Python 代码编译成共享库,直接在 Go 中调用。这种方式性能较好,但实现较为复杂。建议根据实际需求选择最适合的方案,可以从简单的方案开始,随着需求的变化再逐步优化。ZeroMQ 提供了高性能的消息队列功能,适合处理大量数据。使用 Redis 作为数据传输中介,适合分布式环境。适合于同一机器上的进程间通信,实现简单且性能不错。原创 2024-12-09 09:49:39 · 802 阅读 · 0 评论 -
Go和python的混合编程方案
使用 Protocol Buffers 定义服务接口。通过上述方法,您可以在 Go 项目中有效地利用 Python 进行复杂的数据处理,保持代码的可维护性和扩展性。最简单的方法是通过 RESTful API 进行通信,适用于大多数场景。如果需要更高效的通信,可以考虑使用 gRPC。根据具体需求选择合适的混合编程方案,确保系统的稳定性和性能。原创 2024-12-09 09:47:47 · 813 阅读 · 0 评论 -
zeroMQ和消息队列传递-zeromq是个库
ZeroMQ 是一个高性能的异步消息库,提供了多种消息传递模式,包括请求-响应、发布-订阅、推-拉等。ZeroMQ 本身并不是一个消息队列服务器,而是一个库,应用程序可以使用它来实现消息传递。ZeroMQ 的一个特点是它不需要一个持续运行的服务端。相反,ZeroMQ 的节点可以是对等的,任何节点都可以发送和接收消息。ZeroMQ 的设计使得它可以在分布式系统中灵活地使用。原创 2024-12-02 17:45:14 · 222 阅读 · 0 评论 -
messagepack的缺点。protobuf的缺点
【代码】messagepack的缺点。protobuf的缺点。原创 2024-12-02 16:48:55 · 455 阅读 · 0 评论 -
编年史和演讲稿(演讲稿)
在2016年至2020年期间,Nginx及其相关技术在性能优化、功能扩展、协议支持、安全性提升和云原生集成等方面经历了显著的变革。这一时期不仅巩固了Nginx在Web服务器和反向代理领域的主导地位,还通过OpenResty、Stream模块和Caddy等工具,拓展了其应用范围,满足了现代Web应用和微服务架构的多样化需求。同时,随着自动化、DevOps和云计算的兴起,Nginx的生态系统也在不断适应和创新,提供了更加灵活、高效和安全的解决方案。原创 2024-12-01 19:07:52 · 760 阅读 · 0 评论 -
量子加密和AI加密混淆
量子抗性加密算法(Post-Quantum Cryptography, PQC)旨在开发能够抵御量子计算机攻击的加密方法。随着量子计算技术的发展,现有的许多加密算法(如RSA和ECC)可能会被量子算法(如Shor算法)高效破解,因此,量子抗性加密算法成为保障未来信息安全的重要方向。AI驱动的加密优化利用人工智能技术,特别是机器学习和深度学习算法,来提升加密算法的性能、安全性和适应性。通过自动化和智能化的方法,可以优化加密算法的设计、参数选择和运行效率。原创 2024-12-01 16:01:56 · 1168 阅读 · 0 评论 -
zeromq的功能分析说明-和特点代码 消息队列轻量级
总之,ZeroMQ通过提供套接字API,让应用程序可以直接建立通信通道,无需依赖中央消息服务器,这就是它"无中心化"的核心特征。原创 2024-11-27 14:31:09 · 235 阅读 · 0 评论 -
QT-PySide-TCPserver和TCPclient如何选型,server偏向数据分发侧,client偏向数据接收和展示展现一侧
选择 TCP Server 与 TCP Client 的关键因素。原创 2024-11-27 14:01:13 · 1203 阅读 · 0 评论 -
QTCPSocket的多路复用的连接处理和缓存等等
这种实现方式可以很好地处理多个TCP连接,并且支持不同的协议格式。Qt的事件循环机制确保了高效的IO多路复用。原创 2024-11-27 13:05:04 · 276 阅读 · 0 评论 -
基于TCP的协议处理-msgpack-protobuf
最基础的方案,使用Python内置的struct库实现简单的消息帧定界。原创 2024-11-27 11:54:11 · 507 阅读 · 0 评论 -
Quic协议指北HTTP3的网络协议低延迟高效
HTTP/3 是HTTP协议的第三个主要版本,建立在QUIC协议之上,旨在进一步提升网页加载速度和传输效率。与之前的HTTP/1.1和HTTP/2相比,HTTP/3利用QUIC的优势,在提供更低延迟和更高可靠性的同时,简化了网络协议栈。前向纠错(Forward Error Correction, FEC)是一种错误控制技术,允许发送方向数据中添加冗余信息,使接收方在数据丢失或损坏时能够自行恢复原始数据,而无需重新请求。这在不可靠的网络环境中尤为重要,可以提高数据传输的可靠性和效率。原创 2024-11-26 17:09:32 · 1150 阅读 · 0 评论 -
VIrtio的虚拟化驱动-安全方向
基于 Virtio 的驱动开发具有高度的灵活性和扩展性,不仅可以满足不同应用场景下的性能和功能需求,还能通过模块化设计实现多样化的功能扩展。无论是在安全性方面,还是在其他功能领域,如存储、图形、网络等,Virtio 都提供了一个标准化的接口,简化了驱动开发和集成的过程。通过充分利用 Virtio 提供的标准化接口和高效的数据传输机制,可以开发出满足现代云计算和虚拟化需求的多功能驱动,助力构建高性能、安全可靠的虚拟化环境。原创 2024-11-20 22:12:44 · 1123 阅读 · 0 评论 -
VPP和XDP技术,Overlay技术例如vxlan技术,DPDK和SPDK网络技术 Linux流量包处理
Overlay 网络是在现有物理网络(Underlay)之上构建的虚拟网络层,主要用于解决网络虚拟化和隔离问题。VPP 专注于高性能数据包处理Overlay 解决网络虚拟化和隔离问题XDP 提供内核级别的快速数据包处理能力它们可以单独使用,也可以组合使用来构建更强大的网络解决方案。例如,可以使用 XDP 进行初步过滤,VPP 处理复杂的数据包转发,而 Overlay 提供网络虚拟化能力。原创 2024-11-20 22:03:01 · 836 阅读 · 0 评论