过渡矩阵与坐标变换

在n维向量空间中给定两组基:

(I) α1,α2,...,αn
(II) β1,β2,...,βn
若:

β1=c11α1+c21α2+...+cn1αnβ2=c12α1+c22α2+...+cn2αn...βn=cn1α1+cn2α2+...+cnnαn

看到乘的矩阵是列,因此矩阵C在右边,即:
[β1,β2,...,βn]=[α1,α2,...,αn]C,C=c11c21...cn1c12c22...cn2............c1nc2n...cnn

C=[α1,α2,...,αn]1[β1,β2,...,βn]

这种变换是从坐标基 α1,α2,...,αn 到坐标基 β1,β2,...,βn 的变换。

这两个向量组是可以互相表出的,从一个坐标基到另一个坐标基,只需要在想变化的坐标基后面乘上一个矩阵,这个矩阵就叫作过渡矩阵。

定理:过渡矩阵C是可逆矩阵。
定理:向量 γ 在基底 α1,α2,...,αn 的坐标是 x1,x2,...,xn ,在基底 β1,β2,...,βn 下的坐标是 y1,y2,...,yn 则坐标变换公式是:

x1x2...xn=Cy1y2...ynx=Cy

上面的基转化是写在待转的基后面。坐标转换是关注当前坐标如何等于变化后的坐标。仅仅从形式上看, xn×1Cn×nyn×1 那么只有 Cy 才能得到一样的形式,否则 yC 没法进行矩阵乘法。

至于为何是这样,可以这样考虑,在给定的基 [α1,α2,α3] 下,向量 ξ 的坐标是 x=[x1,x2,x3]T ,等价于: ξ=[α1,α2,α3][x1,x2,x3]T

因此,换另一个基时,向量本身不变,只是基变了。

ξ=[α1,α2,α3][x1,x2,x3]T=[β1,β2,β3][y1,y2,y3]T

由此可得:

x=[x1,x2,x3]T=[α1,α2,α3]1[β1,β2,β3][y1,y2,y3]T=Cy

这便是x = Cy的简单推导过程。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值