正态分布下含绝对值的期望求解 -- 待验证

该博客讨论了如何在正态分布下求解含绝对值的期望,利用伽马函数证明了一个小结论,并将其应用于解决正态分布总体的无偏估计问题。通过样本间的独立性和正态分布的性质,推导出无偏估计量的公式,展示了巧妙处理统计问题的方法。
摘要由CSDN通过智能技术生成

正态分布下含绝对值的期望求解

首先用伽马函数来证明一个小结论。

X ∼ N ( 0 , 1 ) , 求 E ∣ X ∣ X\sim N(0,1),求E|X| XN(0,1),EX

分析:我们知道EX=0,那是因为根据表达式:
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 = 1 2 π e − x 2 2 f(x) = \frac{1}{\sqrt {2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt {2\pi}}e^{-\frac{x^2}{2}} f(x)=2π σ1e2σ2(xμ)2=2π 1e2x2
E X = ∫ − ∞ + ∞ x f ( x ) d x = 0 EX = \int_{-\infty}^{+\infty}xf(x)dx = 0 EX=+xf(x)dx=0


E ∣ X ∣ = ∫ − ∞ + ∞ x 2 f ( x ) d x = ∫ − ∞ + ∞ ∣ x ∣ 1 2 π e − x 2 2 d x = 2 ∫ − ∞ + ∞ ∣ x 2 ∣ 1 2 π e − ( x 2 ) 2 d ( x 2 ) = 2 1 2 π ⋅ 2 ∫ 0 + ∞ x 2 e − ( x 2 ) 2 d ( x 2 ) = 2 1 2 π Γ ( 1 ) = 2 π E|X| = \int_{-\infty}^{+\infty}x^2f(x)dx \\ = \int_{-\infty}^{+\infty}|x| \frac{1}{\sqrt {2\pi}}e^{-\frac{x^2}{2}}dx \\ = 2\int_{-\infty}^{+\infty}|\frac{x}{\sqrt 2}| \frac{1}{\sqrt {2\pi}}e^{-(\frac{x}{\sqrt 2})^2}d(\frac{x}{\sqrt 2})\\ = 2 \frac{1}{\sqrt {2\pi}}\cdot 2\int_0^{+\infty}\frac{x}{\sqrt 2}e^{-(\frac{x}{\sqrt 2})^2}d(\frac{x}{\sqrt 2})\\ = 2 \frac{1}{\sqrt {2\pi}}\Gamma(1) =\sqrt {\frac{2}{\pi}} EX=+x2f(x)dx=+x2π 1e2x2dx=2+2 x2π

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值